【題目】已知函數(shù).是自然對(duì)數(shù)的底數(shù))

1)求的單調(diào)遞減區(qū)間;

2)若函數(shù),證明上只有兩個(gè)零點(diǎn).(參考數(shù)據(jù):

【答案】1kZ).(2)見(jiàn)解析.

【解析】

1)由f'x)<0,利用正弦函數(shù)的單調(diào)性質(zhì)可得fx)的單調(diào)遞減區(qū)間;

2)依題意可得g'x)=exsinx+cosx)﹣2,分析其單調(diào)情況并作出圖象,利用零點(diǎn)存在性定理可得,gx)在(x1x2)和(x2,π)內(nèi)各有一個(gè)零點(diǎn),從而可證得結(jié)論成立.

1fx)=exsinx,定義域?yàn)?/span>R.

f'x)<0,解得kZ).

fx)的單調(diào)遞減區(qū)間為kZ).

2)∵g'x)=exsinx+cosx)﹣2,∴g'x)=2excosx

x∈(0,π),∴當(dāng)時(shí),g'x)>0;當(dāng)時(shí),g'x)<0

g'x)在上單調(diào)遞增,在上單調(diào)遞減,

又∵g'0)=120,g'π)=﹣eπ20,

g'x)在(0π)上圖象大致如右圖.

,,使得g'x1)=0g'x2)=0,

且當(dāng)x∈(0,x1)或x∈(x2,π)時(shí),g'x)<0;當(dāng)x∈(x1x2)時(shí),g'x)>0

gx)在(0,x1)和(x2π)上單調(diào)遞減,在(x1x2)上單調(diào)遞增.

g0)=0,∴gx1)<0

,∴gx2)>0

又∵gπ)=﹣0,由零點(diǎn)存在性定理得,gx)在(x1x2)和(x2,π)內(nèi)各有一個(gè)零點(diǎn),

∴函數(shù)gx)在(0,π)上有兩個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,算得,,

1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程

2)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

(附:線性回歸方程中,,其中,為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)=log2kx2+4kx+3).①若fx)的定義域?yàn)?/span>R,則k的取值范圍是_____;②若fx)的值域?yàn)?/span>R,則k的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中勾股容方問(wèn)題:今有勾五步,股十二步,問(wèn)勾中容方幾何?魏晉時(shí)期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補(bǔ)原理給出了這個(gè)問(wèn)題的一般解法:如圖1,用對(duì)角線將長(zhǎng)和寬分別為的矩形分成兩個(gè)直角三角形,每個(gè)直角三角形再分成一個(gè)內(nèi)接正方形(黃)和兩個(gè)小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長(zhǎng)為,寬為內(nèi)接正方形的邊長(zhǎng).由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點(diǎn),作直角三角形的內(nèi)接正方形對(duì)角線,過(guò)點(diǎn)于點(diǎn),則下列推理正確的是(

①由圖1和圖2面積相等得;

②由可得

③由可得;

④由可得

A.①②③④B.①②④C.②③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若四面體ABCD的三組對(duì)棱分別相等,即ABCD,ACBD,ADBC,則下列結(jié)論正確的是(

A.四面體ABCD每組對(duì)棱相互垂直

B.四面體ABCD每個(gè)面的面積相等

C.從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于90°且小于180°

D.連接四面體ABCD每組對(duì)棱中點(diǎn)的線段相互垂直平分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的說(shuō)法,正確的是( )

A.展開(kāi)式中的二項(xiàng)式系數(shù)之和為2048

B.展開(kāi)式中只有第6項(xiàng)的二項(xiàng)式系數(shù)最大

C.展開(kāi)式中第6項(xiàng)和第7項(xiàng)的二項(xiàng)式系數(shù)最大

D.展開(kāi)式中第6項(xiàng)的系數(shù)最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)求;

2)我們知道二項(xiàng)式的展開(kāi)式,若等式兩邊對(duì)求導(dǎo)得,令.利用此方法解答下列問(wèn)題:

①求

②求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù),當(dāng)時(shí),.

1)求出函數(shù)R上的解析式;

2)畫(huà)出函數(shù)的圖象,并根據(jù)圖象寫(xiě)出的單調(diào)區(qū)間.

3)求使時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要得到函數(shù)的圖象,只要將函數(shù)的圖象( )

A.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長(zhǎng)度

B.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長(zhǎng)度

C.向左平移個(gè)長(zhǎng)度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變)

D.向左平移個(gè)長(zhǎng)度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變)

查看答案和解析>>

同步練習(xí)冊(cè)答案