【題目】已知某三棱錐的三視圖如圖所示,圖中的3個直角三角形的直角邊長度已經(jīng)標(biāo)出,則在該三棱錐中,最短的棱和最長的棱所在直線的成角余弦值為( )
A.
B.
C.
D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,當(dāng)x∈R時f(x)≥2x恒成立,求實數(shù)a的值,并求此時f(x)的最小值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)是定義在 R上的偶函數(shù),當(dāng) x≥0 時,f(x)=x2+ax+b 的部分圖象如圖所示:
(1)求 f(x)的解析式;
(2)在網(wǎng)格上將 f(x)的圖象補充完整,并根據(jù) f(x)圖象寫出不等式 f(x)≥1的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,滿足,數(shù)列滿足.
(1)求數(shù)列、的通項公式;
(2),求數(shù)列的前項和;
(3)對任意的正整數(shù),是否存在正整數(shù),使得?若存在,請求出的所有值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當(dāng)>0時,<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究某位學(xué)生的學(xué)習(xí)情況發(fā)現(xiàn):若這位學(xué)生剛學(xué)完的知識存留量記為1,則x天后的存留量;若在t(t>4)天時進行第一次復(fù)習(xí),則此時知識存留量比未復(fù)習(xí)情況下增加一倍(復(fù)習(xí)時間忽略不計),其后存留量y2隨時間變化的曲線恰為直線的一部分,其斜率為(a<0),存留量隨時間變化的曲線如圖所示.當(dāng)進行第一次復(fù)習(xí)后的存留量與不復(fù)習(xí)的存留量相差最大時,則稱此時刻為“二次復(fù)習(xí)最佳時機點”.
(1)若a=-1,t=5求“二次復(fù)習(xí)最佳時機點”;
(2)若出現(xiàn)了“二次復(fù)習(xí)最佳時機點”,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線G:y2=2px(p>0)焦點F的直線l與拋物線G交于M、N兩點(M在x軸上方),滿足 , ,則以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com