A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
分析 經(jīng)P點(diǎn)坐圓O的切線PD,D為切點(diǎn),則由切割線定理知:PD2=|PA|•|PB|=OP2-OD2=OP2-2,而由原點(diǎn)到直線$x-y+2\sqrt{2}=0$的距離公式知:OPmin=$\frac{2\sqrt{2}}{\sqrt{2}}$=2,故$\overrightarrow{PA}$•$\overrightarrow{PB}$=|PA|•|PB|的最小值為2.
解答 解:由題意,經(jīng)P點(diǎn)作圓O的切線PD,D為切點(diǎn),
則由切割線定理知:PD2=|PA|•|PB|=OP2-OD2=OP2-2,
而由原點(diǎn)到直線$x-y+2\sqrt{2}=0$的距離公式知:OPmin=$\frac{2\sqrt{2}}{\sqrt{2}}$=2,
故$\overrightarrow{PA}$•$\overrightarrow{PB}$=|PA|•|PB|的最小值為4-2=2.
故選A.
點(diǎn)評(píng) 本題主要考察了直線與圓的位置關(guān)系,考察了切割線定理和點(diǎn)到直線距離公式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若兩個(gè)平面有一個(gè)公共點(diǎn),則它們有無(wú)數(shù)個(gè)公共點(diǎn) | |
B. | 任意兩條直線能確定一個(gè)平面 | |
C. | 若點(diǎn)A既在平面α內(nèi),又在平面β內(nèi),則α與β相交于直線b,且點(diǎn)A在直線b上 | |
D. | 若已知四個(gè)點(diǎn)不共面,則其中任意三點(diǎn)不共線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | 4 | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+2i | B. | -1+2i | C. | 1-2i | D. | -1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com