如圖,已知⊙O和⊙M相交于A.B兩點,AD為⊙M的直徑,直線BD交⊙O于點C,點G為弧BD中點,連結(jié)AG分別交⊙O.BD于點E.F連結(jié)CE。

(Ⅰ)求證:;

(Ⅱ)求證: 

 

【答案】

見解析

【解析】(1)利用圓的性質(zhì)及三角形相似的結(jié)論得出;(2)利用三角形的相似及(1)問的結(jié)論即可推出等式

(1)連結(jié),,∵的直徑,∴,

的直徑, ∴,∵,∴,

為弧中點,∴,∵,∴,

,∴,∴。    ---------5分

(2)由(1)知,,∴,∴,

由(1)知,∴.---------10分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O和⊙M相交于A、B兩點,AD為⊙M的直徑,直線BD交⊙O于點C,點G為BD中點,連接AG分別交⊙O、BD于點E、F連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:
GF
AG
=
EF2
CE2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知⊙O和⊙M相交于A、B兩點,AD為⊙M的直徑,直線BD交⊙O于點C,點G為弧BD的中點,連接AG分別交⊙O、BD于點E、F,連接CE.
(Ⅰ)求證:AC為⊙O的直徑.
(Ⅱ)求證:AG•EF=CE•GD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•長春一模)請考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.
如圖,已知⊙O和⊙M相交于A、B兩點,AD為⊙M的直徑,直線BD交⊙O于點C,點G為
BD
中點,連接AG分別交⊙O、BD于點E、F,連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:
GF
AG
=
EF2
CE2

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年遼寧省沈陽四校高三上學期12月月考理科數(shù)學試卷 題型:解答題

選修4-1:幾何證明選講

如圖,已知⊙O和⊙M相交于A、B兩點,AD為⊙M的直徑,直線BD交⊙O于點C,點G為弧的中點,連結(jié)AG分別交⊙O、BD于點E、F,連結(jié)CE.

(Ⅰ)求證:為⊙O的直徑。

(Ⅱ)求證:;

 

 

 

查看答案和解析>>

同步練習冊答案