【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至處,此時(shí)測(cè)得其東北方向與它相距海里的處有一外國(guó)船只,且島位于海監(jiān)船正東海里處.
(1)求此時(shí)該外國(guó)船只與島的距離;
(2)觀測(cè)中發(fā)現(xiàn),此外國(guó)船只正以每小時(shí)海里的速度沿正南方向航行,為了將該船攔截在離島海里處,不讓其進(jìn)入島海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):,)
【答案】(1)海里 (2)海監(jiān)船的航向?yàn)楸逼珫|,速度的最小值為海里小時(shí)
【解析】(1)依題意得,在中,,由余弦定理得
,
∴,即此時(shí)該外國(guó)船只與島的距離為海里.
(2)過(guò)點(diǎn)作于點(diǎn),在中,,∴,
設(shè)以為圓心,為半徑的圓交于點(diǎn),連接,
在中,,∴,
又,∴,
外國(guó)船只到達(dá)點(diǎn)的時(shí)間(小時(shí)),∴海監(jiān)船的速度(海里小時(shí)).
故海監(jiān)船的航向?yàn)楸逼珫|,速度的最小值為海里小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,對(duì)于任意的都有,設(shè)時(shí), .
(1)求;
(2)證明:對(duì)于任意的, ;
(3)當(dāng)時(shí),若不等式在上恒定成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, 為直角, .沿的中位線(xiàn),將平面折起,使得,得到四棱錐.
(Ⅰ)求證: 平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)是棱的中點(diǎn),過(guò)做平面與平面平行,設(shè)平面截四棱錐所得截面面積為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圖①②都是表示輸出所有立方小于1 000的正整數(shù)的程序框圖,則圖中應(yīng)分別補(bǔ)充的條件為( )
、佟 、
A. ①n3≥1 000?、趎3<1 000?
B. ①n3≤1 000? ②n3≥1 000?
C. ①n3<1 000?、趎3≥1 000?
D. ①n3<1 000? ②n3<1 000?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,為正三角形,,,點(diǎn),分別為線(xiàn)段、的中點(diǎn),、分別為線(xiàn)段、上一點(diǎn),且,.
(1)確定點(diǎn)的位置,使得平面;
(2)試問(wèn):直線(xiàn)上是否存在一點(diǎn),使得平面與平面所成銳二面角的大小為,若存在,求的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn) , 兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè), 產(chǎn)品的利潤(rùn)與投資關(guān)系如圖(1)所示; 產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)所示(注:利潤(rùn)和投資單位:萬(wàn)元).
(1)分別將 , 兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到 萬(wàn)元資金,并將全部投入 , 兩種產(chǎn)品的生產(chǎn).問(wèn)怎樣分配這 萬(wàn)元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓是以的中點(diǎn)為圓心, 為半徑的圓.
(Ⅰ)若圓的切線(xiàn)在軸和軸上截距相等,求切線(xiàn)方程;
(Ⅱ)若是圓外一點(diǎn),從向圓引切線(xiàn), 為切點(diǎn), 為坐標(biāo)原點(diǎn),且有,求使最小的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,過(guò)分別作曲線(xiàn)與的切線(xiàn),且與關(guān)于軸對(duì)稱(chēng),求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com