【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點,過點的直線交橢圓于,兩點,且的周長為12.
(Ⅰ)求橢圓的方程
(Ⅱ)過點作斜率為的直線與橢圓交于兩點,,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標的取值范圍,若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓上兩個不同的點、關于直線對稱.
(1)若已知,為橢圓上動點,證明:;
(2)求實數(shù)的取值范圍;
(3)求面積的最大值(為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù),給出以下四個命題:(1)當時,單調遞減且沒有最值;(2)方程一定有實數(shù)解;(3)如果方程(為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4)是偶函數(shù)且有最小值.其中假命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓:()的右焦點為,短軸的一個端點到的距離等于焦距.
(1)求橢圓的標準方程;
(2)設、是四條直線,所圍成的矩形在第一、第二象限的兩個頂點,是橢圓上任意一點,若,求證:為定值;
(3)過點的直線與橢圓交于不同的兩點、,且滿足△與△的面積的比值為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數(shù)方程為:(t為參數(shù)),直線l與曲線C分別交于兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓,定義橢圓C的“相關圓”E為:.若拋物線的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.
(1)求橢圓C及其“相關圓”E的方程;
(2)過“相關圓”E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:為定值(為坐標原點);
(3)在(2)的條件下,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的長軸長與焦距比為2:1,左焦點F(﹣2,0),一定點為P(﹣8,0).
(1)求橢圓E的標準方程;
(2)過P的直線與橢圓交于P1、P2兩點,設直線P1F、P2F的斜率分別為k1、k2,求證:k1+k2=0.
(3)求△P1P2F面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com