【題目】已知橢圓的離心率為,分別是橢圓的左右焦點,過點的直線交橢圓于,兩點,且的周長為12

(Ⅰ)求橢圓的方程

(Ⅱ)過點作斜率為的直線與橢圓交于兩點,,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標的取值范圍,若不存在,請說明理由.

【答案】(1);(2)存在,

【解析】

(Ⅰ)由橢圓的離心率為的周長為12可得,可求橢圓方程.
(Ⅱ)的中點為,由條件有,即,,用直線的斜率把表示出來,可求解其范圍.

1)由題意可得,所以,,所以橢圓的方程為.

2)直線的解析式為,設,,的中點為.假設存在點,使得為以為底邊的等腰三角形,則.由,

,所以,

因為,所以,即,所以

時,,所以;

時,,所以

綜上:m取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上兩個不同的點、關于直線對稱.

1)若已知,為橢圓上動點,證明:;

2)求實數(shù)的取值范圍;

3)求面積的最大值(為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)a=-3時,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),給出以下四個命題:(1)當時,單調遞減且沒有最值;(2)方程一定有實數(shù)解;(3)如果方程為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4是偶函數(shù)且有最小值.其中假命題的序號是____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓)的右焦點為,短軸的一個端點的距離等于焦距.

1)求橢圓的標準方程;

2)設、是四條直線,所圍成的矩形在第一、第二象限的兩個頂點,是橢圓上任意一點,若,求證:為定值;

3)過點的直線與橢圓交于不同的兩點、,且滿足△與△的面積的比值為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)

1)當時,求方程的根的個數(shù);

2)若恒成立,求的取值范圍.

注: 為自然對數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數(shù)方程為:t為參數(shù)),直線l與曲線C分別交于兩點.

1)寫出曲線C和直線l的普通方程;

2)若點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓,定義橢圓C相關圓E:.若拋物線的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.

1)求橢圓C及其相關圓E的方程;

2)過相關圓E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:為定值(為坐標原點);

3)在(2)的條件下,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的長軸長與焦距比為21,左焦點F(﹣2,0),一定點為P(﹣80).

1)求橢圓E的標準方程;

2)過P的直線與橢圓交于P1、P2兩點,設直線P1FP2F的斜率分別為k1、k2,求證:k1+k2=0

3)求△P1P2F面積的最大值.

查看答案和解析>>

同步練習冊答案