【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當(dāng)時(shí),,若函數(shù)恰有一個(gè)零點(diǎn),則實(shí)數(shù)的取值集合是( )

A. B.

C. D.

【答案】D

【解析】解:∵f(x)是定義在R上的奇函數(shù),且f(x﹣1)為偶函數(shù),

∴f(﹣x﹣1)=f(x﹣1)=﹣f(x+1),

f(x)=﹣f(x+2),

f(x+4)=﹣f(x+2)=f(x),即函數(shù)f(x)的周期是4,

∵f(x﹣1)為偶函數(shù),∴f(x﹣1)關(guān)于x=0對(duì)稱,

f(x)關(guān)于x=﹣1對(duì)稱,同時(shí)也關(guān)于x=1對(duì)稱,

x∈[﹣1,0],則﹣x∈[0,1],

此時(shí)f(﹣x)= =﹣f(x),則f(x)=﹣,x∈[﹣1,0],

x∈[﹣2,﹣1],x+2∈[0,1],

f(x)=﹣f(x+2)=﹣ ,x∈[﹣2,﹣1],

x∈[1,2],x﹣2∈[﹣1,0],

f(x)=﹣f(x﹣2)= ,x∈[1,2],

作出函數(shù)f(x)的圖象如圖:

由數(shù)g(x)=f(x)﹣x﹣b=0f(x)=x+b,

由圖象知當(dāng)x∈[﹣1,0]時(shí),由 =x+b,平方得x2+(2b+1)x+b2=0,

由判別式△=(2b+1)2﹣4b2=04b+1=0,得b=﹣ ,此時(shí)f(x)=x+b有兩個(gè)交點(diǎn),

當(dāng)x∈[4,5],x﹣4∈[0,1],則f(x)=f(x﹣4)= ,

=x+b,平方得x2+(2b﹣1)x+4+b2=0,

由判別式△=(2b﹣1)2﹣16﹣4b2=04b=﹣15,得b=﹣ ,此時(shí)f(x)=x+b有兩個(gè)交點(diǎn),

則要使此時(shí)f(x)=x+b有一個(gè)交點(diǎn),則在[0,4]內(nèi),b滿足﹣<b<﹣,

即實(shí)數(shù)b的取值集合是4n﹣<b<4n﹣

4(n﹣1)+<b<4(n﹣1)+,

k=n﹣1,

4k+<b<4k+,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)橢圓, 內(nèi)部重疊區(qū)域的邊界記為曲線C,P是曲線C上的任意一點(diǎn),給出下列四個(gè)判斷:

①PF1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四點(diǎn)的距離之和為定值;

②曲線C關(guān)于直線y=x、y=-x均對(duì)稱;③曲線C所圍區(qū)域面積必小于36.

④曲線C總長(zhǎng)度不大于6π.上述判斷中正確命題的序號(hào)為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣6x﹣4y+4=0,點(diǎn)P(6,0).
(1)求過點(diǎn)P且與圓C相切的直線方程l;
(2)若圓M與圓C外切,且與x軸切于點(diǎn)P,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的圖象,則下面判斷正確的是(

A.在區(qū)間(﹣2,1)上f(x)是增函數(shù)
B.在(1,3)上f(x)是減函數(shù)
C.在(4,5)上f(x)是增函數(shù)
D.當(dāng)x=4時(shí),f(x)取極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓E經(jīng)過點(diǎn)A(2,3),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)F1 , F2在x軸上,離心率e=

(1)求橢圓E的方程;
(2)求∠F1AF2的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況,市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到下表:(單位:人)

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出3人贈(zèng)送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解我市高二年級(jí)進(jìn)行的一次考試中數(shù)學(xué)成績(jī)的分布狀況,有關(guān)部門隨機(jī)抽取了一個(gè)樣本,對(duì)數(shù)學(xué)成績(jī)進(jìn)行分組統(tǒng)計(jì)分析如下表:

(1)求出表中m、n、M,N的值,并根據(jù)表中所給數(shù)據(jù)在下面給出的坐標(biāo)系中畫出頻率分布直方圖:

分組

頻數(shù)

頻率

[0,30)

3

0.03

[30,60)

3

0.03

[60,90)

37

0.37

[90,120)

m

n

[120,150)

15

0.15

合計(jì)

M

N


(2)若我市參加本次考試的學(xué)生有18000人,試估計(jì)這次測(cè)試中我市學(xué)生成績(jī)?cè)?0分以上的人數(shù);
(3)為了深入分析學(xué)生的成績(jī),有關(guān)部門擬從分?jǐn)?shù)不超過60的學(xué)生中選取2人進(jìn)行進(jìn)一步分析,求被選中2人分?jǐn)?shù)均不超過30分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,底面,,,,.

(1)求證:平面平面;

(2)若點(diǎn)分別為上的點(diǎn),且,在線段上是否存在一點(diǎn),使得平面;若存在,求出三棱錐的體積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案