已知橢圓:的離心率為且與雙曲線:有共同焦點(diǎn).
(1)求橢圓的方程;
(2)在橢圓落在第一象限的圖像上任取一點(diǎn)作的切線,求與坐標(biāo)軸圍成的三角形的面積的最小值;
(3)設(shè)橢圓的左、右頂點(diǎn)分別為,過(guò)橢圓上的一點(diǎn)作軸的垂線交軸于點(diǎn),若點(diǎn)滿足,,連結(jié)交于點(diǎn),求證:.
(1);(2)2;(3)證明詳見(jiàn)解析.
解析試題分析:(1)有離心率,求得 (s),由公共焦點(diǎn)得即 (t),解由(s)(t)組成的方程組即可.
(2)設(shè)直線的方程為:,代入橢圓方程中,消去y,得到關(guān)于x的一元二次方程,其判別式等于零,可得,在求出直線l與坐標(biāo)軸的交點(diǎn),寫(xiě)出圍成的三角形的面積,再把代入,即可最的最小值.
(3),設(shè),,求出的坐標(biāo),由向量平行的充要條件可得,在求出直線AC的方程,整理得,然后求出P點(diǎn)坐標(biāo)即可.
試題解析:(1)由可得:即
① 2分
又即②聯(lián)立①②解得:
橢圓的方程為: 3分
(2)與橢圓相切于第一象限內(nèi)的一點(diǎn),直線的斜率必存在且為負(fù)
設(shè)直線的方程為:
聯(lián)立消去整理可得:
③, 4分
根據(jù)題意可得方程③只有一實(shí)根,
整理可得:④ 6分
直線與兩坐標(biāo)軸的交點(diǎn)分別為且 7分
與坐標(biāo)軸圍成的三角形的面積⑤, 8分
④代入⑤可得:(當(dāng)且僅當(dāng)時(shí)取等號(hào)) 9分
(3)由(1)得,設(shè),
,可設(shè),
由可得:即 11分
直線的方程為:整理得:
點(diǎn)在上,令代入直線的方程可得:, 13分
即點(diǎn)的坐標(biāo)為為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓過(guò)點(diǎn),離心率為.
(1)求橢圓的方程;
(2)求過(guò)點(diǎn)且斜率為的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
拋物線,其準(zhǔn)線方程為,過(guò)準(zhǔn)線與軸的交點(diǎn)做直線交拋物線于兩點(diǎn).
(1)若點(diǎn)為中點(diǎn),求直線的方程;
(2)設(shè)拋物線的焦點(diǎn)為,當(dāng)時(shí),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:()過(guò)點(diǎn),且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓于兩點(diǎn),且為線段中點(diǎn),再過(guò)作直線.證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓上的點(diǎn)到其兩焦點(diǎn)距離之和為,且過(guò)點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標(biāo)原點(diǎn),斜率為的直線過(guò)橢圓的右焦點(diǎn),且與橢圓交于點(diǎn),,若,求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知兩點(diǎn),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為.
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓()相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.
求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn)及直線,曲線是滿足下列兩個(gè)條件的動(dòng)點(diǎn)的軌跡:①其中是到直線的距離;②
(1) 求曲線的方程;
(2) 若存在直線與曲線、橢圓均相切于同一點(diǎn),求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的一個(gè)焦點(diǎn)為,過(guò)點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的弦長(zhǎng)為;為橢圓上的四個(gè)點(diǎn)。
(Ⅰ)求橢圓的方程;
(Ⅱ)若,且,求四邊形的面積的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn),
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個(gè)不同的交點(diǎn),且與的兩個(gè)交點(diǎn)A和B滿足(其中0為原點(diǎn)),求k的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com