精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)

如圖,在以點O為圓心,|AB|=4為直徑的半圓ADB中,ODAB,P是半圓弧上一點,

POB=30°,曲線C是滿足||MA|-|MB||為定值的動點M的軌跡,且曲線C過點P。

(Ⅰ)建立適當的平面直角坐標系,求曲線C的方程;

(Ⅱ)設過點D的直線l與曲線C相交于不同的兩點E、F。若△OEF的面積不小于2,求直線l斜率的取值范圍。

(Ⅰ)

(Ⅱ)


解析:

(Ⅰ)解法1:以為原點,、所在直線分別為軸、軸,建立平面直角坐標系,則,

由題意得。

所以曲線是以原點為中心,、為焦點的雙曲線。

設實半軸長為,虛半軸長為,半焦距為,

所以曲線的方程為。

解法2:同解法1建立平面直角坐標系,則由題意可得

所以曲線是以原點為中心,、為焦點的雙曲線。

設雙曲線的方程為

則由解得

所以曲線的方程為。

(Ⅱ)解法1:由題意,可設直線的方程為,代入雙曲線的方程并整理得

……①

因為與雙曲線相交不同的兩點E、F,

……②

則由①式得,于是

.

而原點到直線的距離,

面積不小于,即,則有,

解得……③

綜合②、③知,直線的斜率的取值范圍為

解法2:依題意,可設直線l的方程為ykx+2,代入雙曲線C的方程并整理,

得(1-k2x2-4kx-6=0。

∵直線l與雙曲線C相交于不同的兩點E、F,

∴     

k∈(-,-1)∪(-1,1)∪(1,)。

E(x1,y1),F(x2,y2),則由①式得

x1-x2|=           ③

E、F在同一支上時(如左圖所示),

SOEF

E、F在不同支上時(如右圖所示)。

SODE=

綜上得SOEF于是

由|OD|=2及③式,得SOEF=

若△OEF面積不小于2

     、

綜合②、④知,直線l的斜率的取值范圍為[-,-1]∪(-1,1)∪(1,)。

本題條件涉及到一動點到兩定點距離差的絕對值,容易想到雙曲線的定義,所以第(1)問只要求求了出雙曲線方程中的。第(2)涉及到直線與圓錐曲線相交的問題,一般是要設出直線聯立曲線,再用韋達定理,本問要解法的是求范圍的問題,其不等式在第(2)問中已給出,所以只需寫出三角形面積的表達式。

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案