【題目】如圖,三棱維中,平面平面,,是棱的中點,點在棱上點的重心.

1)若的中點,證明;

2)是否存在點,使二面角的大小為,若存在,求的值;若不存在,請說明理由.

【答案】1)詳見解析;(2)存在點,使二面角的大小為,此時.

【解析】

1)延長于點,連接,證明平面平面,得到證明.

2)證明平面,以為原點建立空間直角坐標系,平面的法向量為,平面的法向量,計算夾角得到答案.

1)延長于點,連接,因為點的重心,故的中點,

因為,分別是棱,的中點,所以,,

又因為,所以平面平面,又平面

所以平面

2)連接,因為,所以,又的中點,

所以,

因為平面平面,而平面平面,平面,

所以平面,

如圖,以為原點,垂直于的直線為軸,,所在直線分別為軸,軸建空間直角坐標系,

,則,

所以,,,,

假設存在點,設,

所以,又,

設平面的法向量為,則,

,解得,

又平面,平面的法向量,

而二面角的大小為,所以,

,解得

所以存在點,使二面角的大小為,此時

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,若對任意,都有成立,則稱數(shù)列差增數(shù)列

1)試判斷數(shù)列是否為差增數(shù)列,并說明理由;

2)若數(shù)列差增數(shù)列,且,,對于給定的正整數(shù)m,當,項數(shù)k的最大值為20時,求m的所有可能取值的集合;

3)若數(shù)列差增數(shù)列,,且,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了判斷英語詞匯量與閱讀水平是否相互獨立,某語言培訓機構隨機抽取了100位英語學習者進行調查,經過計算的觀測值為7,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是(

附:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

A.99%以上的把握認為英語詞匯量與閱讀水平無關

B.99.5%以上的把握認為英語詞匯量與閱讀水平有關

C.99.9%以上的把握認為英語詞匯量與閱讀水平有關

D.在犯錯誤的概率不超過1%的前提下,可以認為英語詞匯量與閱讀水平有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,,,分別是,中點,為線段上的一個動點.

1)證明:平面;

2)當二面角的余弦值為時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線,如圖將分別繞原點逆時針旋轉,得到曲線,.以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)分別寫出曲線的極坐標方程;

2)設兩點,兩點(其中均不與原點重合),若四邊形的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了解高三年級學生在線學習情況,統(tǒng)計了2020218-27日(共10天)他們在線學習人數(shù)及其增長比例數(shù)據(jù),并制成如圖所示的條形圖與折線圖的組合圖.

根據(jù)組合圖判斷,下列結論正確的是(

A.5天在線學習人數(shù)的方差大于后5天在線學習人數(shù)的方差

B.5天在線學習人數(shù)的增長比例的極差大于后5天的在線學習人數(shù)的增長比例的極差

C.10天學生在線學習人數(shù)的增長比例在逐日增大

D.10天學生在線學習人數(shù)在逐日增加

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年的臺風都對泉州地區(qū)的漁業(yè)造成較大的經濟損失.某保險公司為此開發(fā)了針對漁船的險種,并將投保的漁船分為I,II兩類,兩類漁船的比例如圖所示.經統(tǒng)計,2019I,II兩類漁船的臺風遭損率分別為2020年初,在修復遭損船只的基礎上,對I類漁船中的進一步改造.保險公司預估這些經過改造的漁船2020年的臺風遭損率將降為,而其他漁船的臺風遭損率不變.假設投保的漁船不變,則下列敘述中正確的是(

A.2019年投保的漁船的臺風遭損率為

B.2019年所有因臺風遭損的投保的漁船中,I類漁船所占的比例不超過

C.預估2020I類漁船的臺風遭損率會小于II類漁船的臺風遭損率的兩倍

D.預估2020年經過進一步改造的漁船因臺風遭損的數(shù)量少于II類漁船因臺風遭損的數(shù)量

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)若函數(shù)在點處的切線的斜率為,求實數(shù)的值;

2)當時,討論函數(shù)的單調性;

3)若關于的不等式在區(qū)間上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系中,曲線的方程為,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.若將曲線上的所有點的橫坐標縮小到原來的一半,縱坐標伸長到原來的倍,得曲線

1)寫出直線和曲線的直角坐標方程;

2)設點 直線與曲線的兩個交點分別為,,求的值.

查看答案和解析>>

同步練習冊答案