以下四個命題中,真命題的個數(shù)是( 。
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
②若p∨q為假命題,則p、q均為假命題;
③命題p:存在x∈R,使得x2+x+1<0,則-p:任意x∈R,都有x2+x+1≥0
④在△ABC中,A<B是sinA<sinB的充分不必要條件.
A.1B.2C.3D.4
對于①,命題“若p則q”的逆否命題是“若非q則非p”
故命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”,可得①正確;
對于②,命題“p∨q”只要存在真命題它就是真命題
而p∨q為假命題,說明p、q中沒有真命題,得它們均為假命題,可得②正確;
對于③,含有量詞的命題“存在x∈R,p(x)”的否定是“任意x∈R,-p(x)”
故命題p“存在x∈R,使得x2+x+1<0”的否定-p是“任意x∈R,都有x2+x+1≥0”,可得③正確;
對于④,在△ABC中,A<B等價于a<b,根據(jù)正弦定理得到sinA<sinB
故在△ABC中,A<B是sinA<sinB的充要條件,可得④不正確
綜上所述,真命題是①②③,共3個
故選:C
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

以下四個命題中,真命題的個數(shù)是( 。
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
②若p∨q為假命題,則p、q均為假命題;
③命題p:存在x∈R,使得x2+x+1<0,則-p:任意x∈R,都有x2+x+1≥0
④在△ABC中,A<B是sinA<sinB的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個命題中,真命題的個數(shù)有(  )
(1)?x∈R,x2+3≥0;
(2)?x∈N,x2>0;
(3)?x∈Z,使x5<1;
(4)?x∈Q,x2=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個命題中,真命題的個數(shù)是( 。
①若p∨q為假命題,則p,q均為假命題;
②命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
③命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1≥0”;
④在△ABC中,A<B是sinA<sinB的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•閘北區(qū)一模)以下四個命題中,真命題的個數(shù)為(  )
①集合{a1,a2,a3,a4}的真子集的個數(shù)為15;
②平面內(nèi)兩條直線的夾角等于它們的方向向量的夾角;
③設z1,z2∈C,若
z
2
1
+
z
2
2
=0
,則z1=0且z2=0;
④設無窮數(shù)列{an}的前n項和為Sn,若{Sn}是等差數(shù)列,則{an}一定是常數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:閘北區(qū)一模 題型:單選題

以下四個命題中,真命題的個數(shù)為( 。
①集合{a1,a2,a3,a4}的真子集的個數(shù)為15;
②平面內(nèi)兩條直線的夾角等于它們的方向向量的夾角;
③設z1,z2∈C,若
z21
+
z22
=0
,則z1=0且z2=0;
④設無窮數(shù)列{an}的前n項和為Sn,若{Sn}是等差數(shù)列,則{an}一定是常數(shù)列.
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案