在△ABC中,若AB⊥AC,AD⊥BC于D,則
1
AD2
=
1
AB2
+
1
AC2
.在四面體A-BCD中,若AB,AC,AD兩兩垂直,AH⊥底面BCD,垂足為H,則類似的結(jié)論是什么?并說明理由.
分析:利用平面中的射影定理證明;將平面中的三角形類比成空間的三棱錐,三角形的兩邊垂直類比成三棱錐的三棱垂直,得到類比性質(zhì)通過作輔助線將空間的證明問題轉(zhuǎn)化為三角形中的性質(zhì).
解答:解:類似的結(jié)論是:如圖,在四面體A-BCD中,若AB,AC,AD兩兩垂直,AH⊥底面BCD,垂足為H,則
1
AH2
=
1
AB2
+
1
AC2
+
1
AD2
.                    …(4分)
證明如下:
連接BH并延長交CD于E,連接AE.∵AB,AC,AD兩兩垂直,
∴AB⊥平面ACD.又∵AE?平面ACD,∴AB⊥AE.
在Rt△ABE中,有
1
AH2
=
1
AB2
+
1
AE2
.     ①…(8分)
又易證CD⊥AE,
∴在Rt△ACD中,
1
AE2
=
1
AC2
+
1
AD2
. ②…(10分)
將②代入①得 
1
AH2
=
1
AB2
+
1
AC2
+
1
AD2
.…(12分)
點評:本題考查利用類比推理得到結(jié)論、證明類比結(jié)論時證明過程與其類比對象的證明過程類似或直接轉(zhuǎn)化為類比對象的結(jié)論.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,若
AB
AC
=
BA
BC
,則△ABC的形狀是( 。
A、直角三角形
B、正三角形
C、等腰三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若
AB
AC
=
AB
CB
=4
,則邊AB的長等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點,已知
AM
=
c
、
AN
=
d
,試用
c
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
AC
=
b
若P,Q,S為線段BC的四等分點,試證:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個結(jié)論:
①?x∈R,2x>x2
②“若x2<1,則-1<x<1”的逆否命題是“若-1<x<1,則x2≥1”;
③要得到y(tǒng)=cos2x的圖象,只需要將y=sin(2x+
π
4
)的圖象向左平移
π
8
個單位;
④在△ABC中,若
AB
CA
>0,則∠A為銳角;
⑤函數(shù)f(x)=sin(2x+
π
3
)在[0,
π
12
]上是增函數(shù),在[
π
12
,
π
2
]上是減函數(shù).
其中正確結(jié)論的序號是
③⑤
③⑤
.(填寫你認為正確的所有結(jié)論序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)設(shè)
a
b
都是非零向量,則“
a
b
=±|
a
|•|
b
|
”是“
a
b
共線”的充要條件
(2)將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個單位,得到函數(shù)y=sin2x的圖象;
(3)在△ABC中,若AB=2,AC=3,∠ABC=
π
3
,則△ABC必為銳角三角形;
(4)在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
其中正確命題的序號是
(1)(3)
(1)(3)
(寫出所有正確命題的序號).

查看答案和解析>>

同步練習冊答案