已知非零向量
a
b
,滿足|
a
+
b
|=|
a
-
b
|,則( 。
A、
a
=
b
B、
a
=-
b
C、
a
b
D、
a
b
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用向量的運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系即可得出.
解答: 解:∵非零向量
a
,
b
,滿足|
a
+
b
|=|
a
-
b
|,
a
2
+
b
2
+2
a
b
=
a
2
+
b
2
-2
a
b

化為
a
b
=0.
a
b

故選:D.
點評:本題考查了向量的運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(x-2)5的展開式中第3項的二項式系數(shù)是( 。
A、10B、-10
C、40D、-40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一位同學(xué)家開了一個小賣部,他為了研究氣溫對熱飲銷售的影響,經(jīng)過統(tǒng)計得到了一天所賣的熱飲杯數(shù)(y)與當天氣溫(x℃)之間的線性關(guān)系,其回歸方程為
y
=-2.35x+147.77.如果某天氣溫為2℃時,則該小賣部大約能賣出熱飲的杯數(shù)是( 。
A、140B、143
C、152D、156

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x-1+
x+1
的值域為( 。
A、[-4,+∞)
B、[-
25
8
,+∞}
C、[-1,+∞)
D、[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線方程3x+2y-6=0的斜率為k,在y軸上的截距為b,則有( 。
A、k=-
2
3
,b=3
B、k=-
3
2
,b=3
C、k=-
2
3
,b=-3
D、k=-
3
2
,b=-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點,且橢圓C上的點A(1,
3
2
)到兩個焦點F1、F2的距離之和為4.
(1)求橢圓C的方程,并寫出其焦點F1、F2的坐標;
(2)過橢圓C的右焦點F2任作一條與兩坐標軸都不垂直的弦AB,若點M在x軸上,且直線MA與直線MB關(guān)于x軸對稱,求點M的坐標;
(3)根據(jù)(2)中的結(jié)論特征,猜想出關(guān)于所有橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個一般結(jié)論(不需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+
4
x
+1,x>0
-x-
4
x
+1,x<0

(1)判斷函數(shù)f(x)的奇偶性;
(2)試用函數(shù)單調(diào)性定義說明函數(shù)f(x)在區(qū)間(0,2]和[2,+∞)上的增減性;
(3)若x1,x2滿足:1≤|x1|≤4,1≤|x2|≤4,試證明:|f(x1)-f(x2)|≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

《國務(wù)院關(guān)于修改<中華人民共和國個人所得稅法實施條例>的決定》已于2008年3月1日起施行,個人所得稅稅率表如下:
級數(shù)全月應(yīng)納稅所得額稅率
1不超過500元的部分5%
2超過500至2 000元的部分10%
3超過2 000元至5 000無的部分15%
9超過100 000元的部分45%
注:本表所示全月應(yīng)納稅所得額為每月收入額減去2 000元后的余額.
(1)若某人2008年4月份的收入額為4 200元,求該人本月應(yīng)納稅所得額和應(yīng)納的稅費;
(2)設(shè)個人的月收入額為x元,應(yīng)納的稅費為y元.當0<x≤3 600時,試寫出y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:x+
x
x2-1
=2
2

查看答案和解析>>

同步練習(xí)冊答案