【題目】某校為了了解籃球運(yùn)動(dòng)是否與性別相關(guān),在高一新生中隨機(jī)調(diào)查了40名男生和40名女生,調(diào)查的結(jié)果如下表:

喜歡

不喜歡

總計(jì)

女生

8

男生

20

總計(jì)

1)根據(jù)題意完成上面的列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)的概率不超過(guò)0.01的前提下認(rèn)為喜歡籃球運(yùn)動(dòng)與性別有關(guān)?

2)從女生中按喜歡籃球運(yùn)動(dòng)與否,用分層抽樣的方法抽取5人做進(jìn)一步調(diào)查,從這5人中任選2人,求2人都喜歡籃球運(yùn)動(dòng)的概率.

附:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

【答案】1)填表、分析見(jiàn)詳解,能在犯錯(cuò)的概率不超過(guò)0.01的前提下認(rèn)為喜歡籃球運(yùn)動(dòng)與性別有關(guān);(2.

【解析】

1)根據(jù)男生和女生各有40個(gè),即可得到表格中的所有數(shù)據(jù),再根據(jù)表格數(shù)據(jù),利用參考公式,計(jì)算,即可進(jìn)行判斷;

2)先根據(jù)分層抽樣的等比例抽取的性質(zhì),計(jì)算出5人中喜歡籃球和不喜歡籃球的人;從而列舉出所有從5人中抽取2人的可能性,再找出滿(mǎn)足題意的可能性,用古典概型概率計(jì)算公式即可求得.

1)填表如下:

喜歡

不喜歡

總計(jì)

女生

32

8

40

男生

20

20

40

合計(jì)

52

28

80

.

所以能在犯錯(cuò)的概率不超過(guò)0.01的前提下認(rèn)為喜歡籃球運(yùn)動(dòng)與性別有關(guān).

2)從女生中按喜歡籃球運(yùn)動(dòng)與否,用分層抽樣的方法抽取5人,

則其中喜歡籃球運(yùn)動(dòng)的有(人),

不喜歡籃球運(yùn)動(dòng)的有(人)

設(shè)喜歡籃球運(yùn)動(dòng)的4人記為,不喜歡籃球運(yùn)動(dòng)的記為,

則從這5人中任選2人的所有結(jié)果有:

,共10.

其中恰好2人都喜歡籃球運(yùn)動(dòng)的有,共6.

所以從這5人中任選2人,2人都喜歡籃球運(yùn)動(dòng)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地環(huán)保部門(mén)跟蹤調(diào)查一種有害昆蟲(chóng)的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲(chóng)的數(shù)量(萬(wàn)只)與時(shí)間(年)(其中的關(guān)系為.為有效控制有害昆蟲(chóng)數(shù)量、保護(hù)生態(tài)環(huán)境,環(huán)保部門(mén)通過(guò)實(shí)時(shí)監(jiān)控比值其中為常數(shù),且)來(lái)進(jìn)行生態(tài)環(huán)境分析.

(1)當(dāng)時(shí),求比值取最小值時(shí)的值;

(2)經(jīng)過(guò)調(diào)查,環(huán)保部門(mén)發(fā)現(xiàn):當(dāng)比值不超過(guò)時(shí)不需要進(jìn)行環(huán)境防護(hù).為確保恰好3年不需要進(jìn)行保護(hù),求實(shí)數(shù)的取值范圍.為自然對(duì)數(shù)的底,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中, , , 的中點(diǎn),△是等腰三角形, 的中點(diǎn), 上一點(diǎn);

(1)若∥平面,求

(2)平面將三棱柱分成兩個(gè)部分,求含有點(diǎn)的那部分體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大以來(lái),某貧困地區(qū)扶貧辦積極貫徹落實(shí)國(guó)家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過(guò)不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭(zhēng)早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了2018年位農(nóng)民的年收人并制成如下頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計(jì)位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求:

(i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪(fǎng)了位農(nóng)民。若每個(gè)農(nóng)民的年收人相互獨(dú)立,問(wèn):這位農(nóng)民中的年收入不少于千元的人數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式

則①;②;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年底,我國(guó)發(fā)明專(zhuān)利申請(qǐng)量已經(jīng)連續(xù)8年位居世界首位,下表是我國(guó)2012年至2018年發(fā)明專(zhuān)利申請(qǐng)量以及相關(guān)數(shù)據(jù).

總計(jì)

年代代碼

1

2

3

4

5

6

7

28

申請(qǐng)量(萬(wàn)件)

65

82

92

110

133

138

154

774

65

164

276

440

665

828

1078

3516

注:年代代碼1~7分別表示2012~2018.

1)可以看出申請(qǐng)量每年都在增加,請(qǐng)問(wèn)這幾年中那一年的增長(zhǎng)率達(dá)到最高,最高是多少?

2)建立關(guān)于的回歸直線(xiàn)方程(精確到0.01),并預(yù)測(cè)我國(guó)發(fā)明專(zhuān)利申請(qǐng)量突破200萬(wàn)件的年份.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是菱形,的中點(diǎn),為等腰直角三角形,,且.

1)求證:平面;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近來(lái)天氣變化無(wú)常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機(jī)對(duì)人院的名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機(jī)抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,

(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整;

患傷風(fēng)感冒疾病

不患傷風(fēng)感冒疾病

合計(jì)

25

20

合計(jì)

100

(2)能否在犯錯(cuò)誤的概率不超過(guò)的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說(shuō)明你的理由;

(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為,的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為邊長(zhǎng)為2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,點(diǎn)F為棱PD的中點(diǎn).

(1)在棱AB上是否存在一點(diǎn)E,使得AF∥面PCE,并說(shuō)明理由;

(2)當(dāng)二面角D﹣FC﹣B的余弦值為時(shí),求直線(xiàn)PB與平面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定下列四個(gè)命題

若一個(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;

若一條直線(xiàn)和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線(xiàn)一定平行于另一個(gè)平面;

若一條直線(xiàn)和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線(xiàn)也和一個(gè)平面垂直;

若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直,

其中,真命題的個(gè)數(shù)是  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案