【題目】某校為了了解籃球運(yùn)動(dòng)是否與性別相關(guān),在高一新生中隨機(jī)調(diào)查了40名男生和40名女生,調(diào)查的結(jié)果如下表:
喜歡 | 不喜歡 | 總計(jì) | |
女生 | 8 | ||
男生 | 20 | ||
總計(jì) |
(1)根據(jù)題意完成上面的列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)的概率不超過(guò)0.01的前提下認(rèn)為喜歡籃球運(yùn)動(dòng)與性別有關(guān)?
(2)從女生中按喜歡籃球運(yùn)動(dòng)與否,用分層抽樣的方法抽取5人做進(jìn)一步調(diào)查,從這5人中任選2人,求2人都喜歡籃球運(yùn)動(dòng)的概率.
附:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
【答案】(1)填表、分析見(jiàn)詳解,能在犯錯(cuò)的概率不超過(guò)0.01的前提下認(rèn)為喜歡籃球運(yùn)動(dòng)與性別有關(guān);(2).
【解析】
(1)根據(jù)男生和女生各有40個(gè),即可得到表格中的所有數(shù)據(jù),再根據(jù)表格數(shù)據(jù),利用參考公式,計(jì)算,即可進(jìn)行判斷;
(2)先根據(jù)分層抽樣的等比例抽取的性質(zhì),計(jì)算出5人中喜歡籃球和不喜歡籃球的人;從而列舉出所有從5人中抽取2人的可能性,再找出滿(mǎn)足題意的可能性,用古典概型概率計(jì)算公式即可求得.
(1)填表如下:
喜歡 | 不喜歡 | 總計(jì) | |
女生 | 32 | 8 | 40 |
男生 | 20 | 20 | 40 |
合計(jì) | 52 | 28 | 80 |
∴.
所以能在犯錯(cuò)的概率不超過(guò)0.01的前提下認(rèn)為喜歡籃球運(yùn)動(dòng)與性別有關(guān).
(2)從女生中按喜歡籃球運(yùn)動(dòng)與否,用分層抽樣的方法抽取5人,
則其中喜歡籃球運(yùn)動(dòng)的有(人),
不喜歡籃球運(yùn)動(dòng)的有(人)
設(shè)喜歡籃球運(yùn)動(dòng)的4人記為,不喜歡籃球運(yùn)動(dòng)的記為,
則從這5人中任選2人的所有結(jié)果有:
,共10種.
其中恰好2人都喜歡籃球運(yùn)動(dòng)的有,共6種.
所以從這5人中任選2人,2人都喜歡籃球運(yùn)動(dòng)的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地環(huán)保部門(mén)跟蹤調(diào)查一種有害昆蟲(chóng)的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲(chóng)的數(shù)量(萬(wàn)只)與時(shí)間(年)(其中)的關(guān)系為.為有效控制有害昆蟲(chóng)數(shù)量、保護(hù)生態(tài)環(huán)境,環(huán)保部門(mén)通過(guò)實(shí)時(shí)監(jiān)控比值(其中為常數(shù),且)來(lái)進(jìn)行生態(tài)環(huán)境分析.
(1)當(dāng)時(shí),求比值取最小值時(shí)的值;
(2)經(jīng)過(guò)調(diào)查,環(huán)保部門(mén)發(fā)現(xiàn):當(dāng)比值不超過(guò)時(shí)不需要進(jìn)行環(huán)境防護(hù).為確保恰好3年不需要進(jìn)行保護(hù),求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中, , , 是的中點(diǎn),△是等腰三角形, 為的中點(diǎn), 為上一點(diǎn);
(1)若∥平面,求;
(2)平面將三棱柱分成兩個(gè)部分,求含有點(diǎn)的那部分體積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九大以來(lái),某貧困地區(qū)扶貧辦積極貫徹落實(shí)國(guó)家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過(guò)不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭(zhēng)早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了2018年位農(nóng)民的年收人并制成如下頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計(jì)位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);
(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求:
(i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?
(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪(fǎng)了位農(nóng)民。若每個(gè)農(nóng)民的年收人相互獨(dú)立,問(wèn):這位農(nóng)民中的年收入不少于千元的人數(shù)最有可能是多少?
附:參考數(shù)據(jù)與公式
則①;②;③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】至2018年底,我國(guó)發(fā)明專(zhuān)利申請(qǐng)量已經(jīng)連續(xù)8年位居世界首位,下表是我國(guó)2012年至2018年發(fā)明專(zhuān)利申請(qǐng)量以及相關(guān)數(shù)據(jù).
總計(jì) | ||||||||
年代代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申請(qǐng)量(萬(wàn)件) | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
>
注:年代代碼1~7分別表示2012~2018.
(1)可以看出申請(qǐng)量每年都在增加,請(qǐng)問(wèn)這幾年中那一年的增長(zhǎng)率達(dá)到最高,最高是多少?
(2)建立關(guān)于的回歸直線(xiàn)方程(精確到0.01),并預(yù)測(cè)我國(guó)發(fā)明專(zhuān)利申請(qǐng)量突破200萬(wàn)件的年份.
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是菱形,為的中點(diǎn),為等腰直角三角形,,且.
(1)求證:平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近來(lái)天氣變化無(wú)常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機(jī)對(duì)人院的名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機(jī)抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,
(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整;
患傷風(fēng)感冒疾病 | 不患傷風(fēng)感冒疾病 | 合計(jì) | |
男 | 25 | ||
女 | 20 | ||
合計(jì) | 100 |
(2)能否在犯錯(cuò)誤的概率不超過(guò)的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說(shuō)明你的理由;
(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,有名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為邊長(zhǎng)為2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,點(diǎn)F為棱PD的中點(diǎn).
(1)在棱AB上是否存在一點(diǎn)E,使得AF∥面PCE,并說(shuō)明理由;
(2)當(dāng)二面角D﹣FC﹣B的余弦值為時(shí),求直線(xiàn)PB與平面ABCD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定下列四個(gè)命題
若一個(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;
若一條直線(xiàn)和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線(xiàn)一定平行于另一個(gè)平面;
若一條直線(xiàn)和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線(xiàn)也和一個(gè)平面垂直;
若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直,
其中,真命題的個(gè)數(shù)是
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com