【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求出圓的直角坐標(biāo)方程;
(2)已知圓與軸相交于, 兩點(diǎn),直線: 關(guān)于點(diǎn)對(duì)稱(chēng)的直線為.若直線上存在點(diǎn)使得,求實(shí)數(shù)的最大值.
【答案】(1)的標(biāo)準(zhǔn)方程為;(2).
【解析】試題分析:(1)利用極值互化公式,可得的標(biāo)準(zhǔn)方程為.
(2)由題可得是直線和以為直徑的圓的公共點(diǎn),轉(zhuǎn)化為直線與圓有公共點(diǎn)求解.
試題解析:(1)由得,即,即圓的標(biāo)準(zhǔn)方程為.
(2): 關(guān)于點(diǎn)的對(duì)稱(chēng)直線的方程為,而為圓的直徑,故直線上存在點(diǎn)使得的充要條件是直線與圓有公共點(diǎn),故,于是,實(shí)數(shù)的最大值為.
點(diǎn)晴:本題考查的是極值互化和直線與圓的位置關(guān)系.極值互化時(shí)要記清公式,第二問(wèn)中用了轉(zhuǎn)化與化歸思想, 說(shuō)明點(diǎn)在以為直徑的圓上,同時(shí)直線上存在點(diǎn),所以是直線和以為直徑的圓的公共點(diǎn),即轉(zhuǎn)化為直線與圓有公共點(diǎn),所以,即,得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本著健康、低碳的生活理念,租自行車(chē)騎游的人越來(lái)越多.某自行車(chē)租車(chē)點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每年每次租時(shí)間不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人獨(dú)立來(lái)該租車(chē)點(diǎn)租車(chē)騎游(各租一車(chē)一次).設(shè)甲、乙不超過(guò)兩小時(shí)還車(chē)的概率分別為, ;兩小時(shí)以上且不超過(guò)三小時(shí)還車(chē)的概率為, ;兩人租車(chē)時(shí)間都不會(huì)超過(guò)四小時(shí).
(1)求甲、乙都在三到四小時(shí)內(nèi)還車(chē)的概率和甲、乙兩人所付租車(chē)費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付的租車(chē)費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車(chē)單車(chē)共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門(mén)為了對(duì)該城市共享單車(chē)加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車(chē)的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.
(Ⅰ) 求圖中的值;
(Ⅱ) 已知滿意度評(píng)分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評(píng)分值為[90,100]的人中隨機(jī)抽取2人進(jìn)行座談,求所抽取的兩人中至少有一名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查“五一”小長(zhǎng)假出游選擇“有水的地方”是否與性別有關(guān),現(xiàn)從該市“五一”出游旅客中隨機(jī)抽取500人進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)
選擇“有水的地方” | 不選擇“有水的地方” | 合計(jì) | |
男 | 90 | 110 | 200 |
女 | 210 | 90 | 300 |
合計(jì) | 300 | 200 | 500 |
(Ⅰ)據(jù)此樣本,有多大的把握認(rèn)為選擇“有水的地方”與性別有關(guān);
(Ⅱ)若以樣本中各事件的頻率作為概率估計(jì)全市“五一”所有出游旅客情況,現(xiàn)從該市的全體出游旅客(人數(shù)眾多)中隨機(jī)抽取3人,設(shè)3人中選擇“有水的地方”的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的數(shù)學(xué)期望和方差.
附臨界值表及參考公式:
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0且a≠1,下列四組函數(shù)中表示相等函數(shù)的是( )
A.y=logax與y=(logxa)﹣1
B.y=2x與y=logaa2x
C. 與y=x
D.y=logax2與y=2logax
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|,g(x)=x+1.
(1)若a=1,求不等式f(x)≤1的解集;
(2)對(duì)任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A.y=x+1與y=
B.f(x)= 與g(x)=x
C.f(x)=|x|與g(x)=
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中, , , 為的中點(diǎn).
(1)求證: ;
(2)設(shè)平面平面, , ,求二面角的平面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com