設(shè)

(Ⅰ)求b的取值范圍;

(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

答案:
解析:

  解:(Ⅰ)函數(shù)內(nèi)是奇函數(shù)等價(jià)于:

  對(duì)任意

  ①式即為,此式對(duì)任意,代入②式,得,即都成立相當(dāng)于,所以b的取值范圍是

  (Ⅱ)設(shè)任意的,所以

  從而內(nèi)是減函數(shù),具有單調(diào)性.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
n
=(2cosx,
3
sinx),
m
=(cosx,2cosx)
,設(shè)f(x)=
n
m
+a

(1)若x∈[0,
π
2
]
且a=l時(shí),求f(x)的最大值和最小值,以及取得最大值和最小值時(shí)x的值;
(2)若x∈[0,π]且a=-1時(shí),方程f(x)=b有兩個(gè)不相等的實(shí)數(shù)根x1、x2,求b的取值范圍及x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asinx-x+b(a,b均為正常數(shù)).
(1)若a=2,求函數(shù)f(x)在區(qū)間[0,π]上的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)在x=
π
3
處有極值.
①對(duì)于一切x∈[0,
π
2
]
,不等式f(x)>
2
sin(x+
π
4
)
恒成立,求b的取值范圍;
②若函數(shù)f(x)在區(qū)間(
m-1
3
π,  
2m-1
3
π)
上是單調(diào)增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蕪湖二模)設(shè)函數(shù)f(x)=
axx2+b
(a>0)

(1)若函數(shù)f(x)在x=-1處取得極值-2,求a,b的值.
(2)若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx
(a≠0).
(1)當(dāng)a=-2時(shí),函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)在(1)的條件下,設(shè)函數(shù)φ(x)=e2x-bex(e為自然對(duì)數(shù)的底數(shù)),x∈[0,ln2],求函數(shù)φ(x)的最小值;
(3)令V(x)=2f(x)-x2-kx(k∈R),如果V(x)的圖象與x軸交于A(x1,0),B(x2,0)(0<x1<x2)兩點(diǎn),且線段AB的中點(diǎn)為C(x0,0),求證:V′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶模擬)設(shè)函數(shù)f(x)=(x-2)2+blnx,其中b為常數(shù).
(Ⅰ)若函數(shù)f(x)在定義域上單調(diào)遞增,求b的取值范圍;
(Ⅱ)若b≤0,求函數(shù)f(x)的極值點(diǎn);
(Ⅲ)當(dāng)b=-6時(shí),利用函數(shù)f(x)的性質(zhì)證明:對(duì)任意大于1的正整數(shù)n,不等式
1
6n2
-
1
6
<ln(2n+1)-lnn<
1
6n2
-
1
6
+ln3
恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案