6.下列命題中為真命題的是( 。
A.命題“若x>1,則x2>1”的逆命題B.命題“若x=1,則x2+x-2=0”的否命題
C.命題“若x>y,則x>|y|”的逆命題D.命題“若x2>0,則x>-1”的逆否命題

分析 A、B、C分別寫出其相應(yīng)命題,再判定即可,D,原命題與逆否命題同真假,只需判定原命題真假即可.

解答 解:對(duì)于A,命題“若x>1,則x2>1”的逆命題是“若x2>1,則x>1”是假命題(x<-1也滿足),故錯(cuò);
對(duì)于B,命題“若x=1,則x2+x-2=0”的否命題是“若x≠1,則x2+x-2≠0”(x=-2時(shí)x2+x-2=0),是假命題,故錯(cuò)
對(duì)于C,命題“若x>y,則x>|y|”的逆命題是”若x>|y|”則x>y”(x>0)是真命題,故正確;
對(duì)于D,命,題“若x2>0,則x>-1”(x≠0即可)是假命題,故其逆否命題也是假,故錯(cuò).
故選:C.

點(diǎn)評(píng) 本題考查了命題的四種形式及真假的判定,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<π)的 一段圖象(如圖)所示.
(1)求函數(shù)的解析式;
(2)當(dāng)x∈[0,$\frac{π}{2}}$],求函數(shù)f(x)的最值,并且求使f(x)取得最值對(duì)應(yīng)x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,∠ABC=∠BAD=90°,BC=2$\sqrt{2}$,AP=AD=AB=$\sqrt{2}$.
(Ⅰ)設(shè)平面PAD與平面PBC的交線為l,證明BC∥l;
(Ⅱ)試在棱PA上確定一點(diǎn)E,使得PC∥平面BDE,并求出此時(shí)$\frac{AE}{EP}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)變量x,y滿足約束條件:$\left\{\begin{array}{l}{y≥x}\\{x+2y≤2}\\{x≥-2}\end{array}\right.$,則z=$\frac{y+2}{x+2}$ 的( 。
A.最大值為-$\frac{1}{2}$B.最小值為-$\frac{1}{2}$C.最大值為1D.最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某三棱錐的三視圖如圖所示,正視圖是邊長為3的等邊三角形,則該三棱錐外接球的表面積為(  )
A.12πB.$6\sqrt{3}π$C.D.18π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系xOy中,直線l:$\left\{\begin{array}{l}{x=t}\\{y=-\sqrt{3}t}\end{array}\right.$(t為參數(shù)),曲線C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的方程為ρ=-2cosθ+2$\sqrt{3}$sinθ.
(1)分別求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)直線l交曲線C1于O、A兩點(diǎn),直線l交曲線C2于O、B兩點(diǎn),求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)min{p,q,r}為表示p,q,r三者中較小的一個(gè),若函數(shù)f(x)=min{x+1,-2x+7,x2-x+1},則不等式f(x)>1的解集為( 。
A.(0,2)B.(-∞,0)C.(1,+∞)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn.且S10=3S5+20,a2n=2an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=$\frac{2n+1}{{{{({{a_{n+1}}})}^2}a_n^2}}$,數(shù)列{bn}的前n項(xiàng)和Tn,證明:對(duì)任意n∈N*,都有$\frac{3}{64}$≤Tn<$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=7,c=5,則$\frac{sinA}{sinC}$的值是(  )
A.$\frac{7}{5}$B.$\frac{5}{7}$C.$±\frac{7}{12}$D.$\frac{5}{12}$

查看答案和解析>>

同步練習(xí)冊(cè)答案