1.已知圓C的圓心是直線x-y+1=0與x軸的交點(diǎn),且圓C被直線x+y+3=0所截得的弦長(zhǎng)為4,則圓C的方程為(x+1)2+y2=6.

分析 欲求圓的方程則先求出圓心和半徑,根據(jù)圓C的圓心是直線x-y+1=0與x軸的交點(diǎn),求出圓心;圓C被直線x+y+3=0所截得的弦長(zhǎng)為4,求出半徑,即可求出圓C的方程.

解答 解:令y=0得x=-1,所以直線x-y+1=0,與x軸的交點(diǎn)為(-1,0)
所以圓心到直線的距離等于$\frac{|-1+0+3|}{\sqrt{2}}$=$\sqrt{2}$,
因?yàn)閳AC被直線x+y+3=0所截得的弦長(zhǎng)為4,
所以r=$\sqrt{2+4}$=$\sqrt{6}$
所以圓C的方程為(x+1)2+y2=6;
故答案為:(x+1)2+y2=6.

點(diǎn)評(píng) 本題主要考查直線與圓的位置關(guān)系,以及圓的標(biāo)準(zhǔn)方程等基礎(chǔ)知識(shí),屬于容易題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}+x-2,x>1}\end{array}\right.$則f($\frac{1}{f(2)}$)的值為( 。
A.18B.-$\frac{27}{16}$C.$\frac{8}{9}$D.$\frac{15}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+1,x≥0}\\{-1+lo{g}_{2}(-x),x<0}\end{array}\right.$,若函數(shù)g(x)=f(x)-a有三個(gè)不同的零點(diǎn)x1,x2,x3,則x1+x2+x3的取值范圍是( 。
A.(0,4)B.(-4,0)C.[0,$\frac{15}{4}$)D.($\frac{1}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,三棱柱ABC-A1B1C1中,D是AC的中點(diǎn),求證:B1C∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求$\underset{lim}{x→+∞}$($\frac{2}{π}$arctanx)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知一條曲線C在y軸右側(cè),C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)已知點(diǎn)P是曲線C上一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線x+2y+5=0上一個(gè)動(dòng)點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|log2x<1},B={y|y=2x,x∈A},則A∩B=( 。
A.(0,2)B.(1,2)C.[0,4)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,∠DAB=∠ABC=90°,PA⊥平面ABCD,點(diǎn)E是PA的中點(diǎn),AB=BC=1,AD=2.求證:
(1)平面PCD⊥平面PAC;
(2)BE∥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左右頂點(diǎn)分別為A1,A2,直線l:x=8與x軸交于點(diǎn)T0,T為l上異于T0的任意一點(diǎn),直線TA1,TA2分別與橢圓C交于M,N兩點(diǎn),則直線MN恒過定點(diǎn)$(\frac{1}{2},0)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案