若實數(shù)x,y滿足
x+2y≤4
2x+y≤5
x≥0
y≥0
,則z=300x+200y的最大值為( 。
分析:先畫出約束條件
x+2y≤4
2x+y≤5
x≥0
y≥0
的可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數(shù)的解析式,分析后易得目標函數(shù)z=300x+200y的最大值.
解答:解:由約束條件
x+2y≤4
2x+y≤5
x≥0
y≥0
得如圖所示的四邊形區(qū)域,
四個頂點坐標為A(2,1),(0,2),(2.5,0),O(0,0)
直線z=300x+200y過點 A(2,1)時,z取得最大值為800;
故選D.
點評:在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數(shù)⇒④驗證,求出最優(yōu)解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
則M=x+y
的最小值是(  )
A、
1
3
B、2
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x、y滿足
(x-y+6)(x+y-6)≥0
1≤x≤4
,則
y
x
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x-y+1≤0
x≤0
,則x2+y2的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•衢州一模)若實數(shù)x,y滿足
x+y-2≥0
x≤4
y≤5
,則s=y-x的最大值是
8
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•深圳二模)若實數(shù)x,y滿足
x≤1
y≥0
x-y≥0
,則x+y的取值范圍是( 。

查看答案和解析>>

同步練習冊答案