(本小題滿分13分)
(1)證明:函數(shù)在上是減函數(shù),在[,+∞)上是增函數(shù);
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(I)求證:不論為何實數(shù)總是為增函數(shù);
(II)確定的值, 使為奇函數(shù);
(Ⅲ)當為奇函數(shù)時, 求的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),(且)。
(1)設,令,試判斷函數(shù)在上的單調性并證明你的結論;
(2)若且的定義域和值域都是,求的最大值;
(3)若不等式對恒成立,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
.已知函數(shù) 是奇函數(shù).
(1)求實數(shù)的值;
(2)若函數(shù)在區(qū)間上單調遞增,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)已知函數(shù)是定義在(–1,1)上的奇函數(shù),且.
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(–1,1)上的單調性并用定義證明;
(3)解關于x的不等式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分16分)定義在的函數(shù)
(1)對任意的都有;
(2)當時,,回答下列問題:
①判斷在的奇偶性,并說明理由;
②判斷在的單調性,并說明理由;
③若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(I)若的一個極值點,求a的值;
(II)求證:當上是增函數(shù);
(III)若對任意的總存在成立,求實數(shù)m的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com