7.鐵路線旁邊有一沿鐵路方向的公路,在公路上行駛的一輛拖拉機(jī)司機(jī)只看見(jiàn)迎面駛來(lái)的一列貨車(chē)從車(chē)頭到車(chē)尾經(jīng)過(guò)他身旁共用了15秒,已知貨車(chē)車(chē)速為60千米/時(shí),全長(zhǎng)345米.求拖拉機(jī)的速度.

分析 設(shè)拖拉機(jī)的速度vm/s.60千米/時(shí)=$\frac{50}{3}$m/s.由題意可得:$(\frac{50}{3}+v)×15$=345,解出即可得出.

解答 解:設(shè)拖拉機(jī)的速度vm/s.
60千米/時(shí)=$\frac{50}{3}$m/s.
則$(\frac{50}{3}+v)×15$=345,
v=$\frac{19}{3}$m/s.
答:拖拉機(jī)的速度為$\frac{19}{3}$m/s.

點(diǎn)評(píng) 本題考查了速度與路程之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,若△PF1F2為直角三角形,則點(diǎn)P到x軸的距離為$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖是正方體截去陰影部分所得的幾何體,則該幾何體的左視圖是 ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.利用三角函數(shù)線,寫(xiě)出滿足下列條件的角x的集合.
(1)sinx≥$\frac{\sqrt{2}}{2}$;
(2)cosx≤$\frac{1}{2}$;
(3)tanx≥-1;
(4)sinx>$\frac{1}{2}$且cosx>$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.2•9x-5•6x+3•4x=0,則x=0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=3${\;}^{-{x}^{2}+ax+2}$.
(1)若函數(shù)f(x)為偶函數(shù),求實(shí)數(shù)a的值;
(2)若a=2,求函數(shù)f(x)的單調(diào)區(qū)間,并求出其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如果A∪B=∅,請(qǐng)說(shuō)明集合A、B與空集∅的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.化簡(jiǎn):
(1)$\frac{2co{s}^{2}θ-1}{1-2si{n}^{2}θ}$;
(2)sinαcosα(tanα+cotα).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.R上的奇函數(shù)f(x)關(guān)于x=1對(duì)稱,當(dāng)x∈[0,1]時(shí),f(x)=1-(x-1)2
(1)證明f(x)為周期函數(shù).
(2)求f(x)在x∈[-2,2]的表達(dá)式.
(3)結(jié)合圖象在R上解關(guān)于x的方程f(x)=$\frac{x}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案