若A、B、C三點共線,O是這條直線外的一點,滿足數(shù)學公式,則m的值為


  1. A.
    1
  2. B.
    2
  3. C.
    -3
  4. D.
    -4
A
分析:根據(jù)A、B、C三點共線,得出,再將條件中的向量的表達式代入得到二個向量之間的關系,最后根據(jù)平面向量基本定理即可得到答案.
解答:∵A、B、C三點共線,

,
∵滿足,

,

則m的值為1
故選A.
點評:用一組向量來表示一個向量,是以后解題過程中常見到的,向量的加減運算是用向量解決問題的基礎,要學好運算,才能用向量解決立體幾何問題,三角函數(shù)問題,好多問題都是以向量為載體的.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若A、B、C三點共線,O是這條直線外的一點,滿足m
OA
-2
OB
+
OC
=
0
,則m的值為( 。
A、1B、2C、-3D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(1,1),B(3,-1),C(a,b)
(1)若A,B,C三點共線,求a,b的關系式;  
(2)若
AC
=2
AB
,求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0)(其中a>0,b>0,O是坐標原點),若A,B,C三點共線,則
1
a
+
2
b
的最小值為
8
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=(3,-4)
OB
=(6,-3)
OC
=(5-m,-3-m)

(1)若A,B,C三點共線,求實數(shù)m的值;
(2)若△ABC是直角三角形,求實數(shù)m的值;
(3)若∠ABC是銳角,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不共線向量
a
、
b
,
AB
=t
a
-
b
(t∈R),
AC
=
a
+3
b
,若A、B、C三點共線,則實數(shù)t等于
-
1
3
-
1
3

查看答案和解析>>

同步練習冊答案