已知函數(shù)的圖象在點處的切線恰好與直線平行,若在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是
A. B. C. D.
B
【解析】
試題分析:解:∵,∴f’(x)=-3mx2+2nx,∴f’(-1)=-3m-2n,∵函數(shù)的圖象在點(-1,2)處的切線恰好與直線3x+y=0平行,∴-3m-2n=-3,m+n=2,,解得m=-1,n=3,∴f’(x)=3x2+6x,令f’(x)=3x2+6x≤0,解得-2≤x≤0,∴函數(shù)f(x)在[-2,0]上單調(diào)遞減,∵f(x)在區(qū)間[t,t+1]上單調(diào)遞減,∴ ,解得故選B.
考點:導(dǎo)數(shù)的幾何意義,函數(shù)單調(diào)性
點評:本題考查利用導(dǎo)數(shù)求曲線上某點處的切線方程的應(yīng)用,具體涉及到導(dǎo)數(shù)的幾何意義、直線平行的條件、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)等知識點,解題時要認真審題,仔細解答
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的圖象在點處的切線斜率為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點,使得曲線在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側(cè)?若存在,求出點A的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高三上學(xué)期期中考試理科數(shù)學(xué)試卷 (解析版) 題型:填空題
已知函數(shù)的圖象在點處的切線與直線平行,若數(shù)列的前項和為,則的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省高三教學(xué)質(zhì)量監(jiān)測理科數(shù)學(xué)卷 題型:填空題
已知函數(shù)的圖象在點處的切線方程是= 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:選擇題
已知函數(shù)的圖象在點處的切線的斜率為3,數(shù)列
的前項和為,則的值為( )
A、 B、 C、 D、
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年福建省八縣(市高二下學(xué)期期末聯(lián)考(文科)數(shù)學(xué)卷 題型:解答題
(本題滿分14分)已知函數(shù)的圖象在點處的切線的斜率為,且在處取得極小值。
(1)求的解析式;
(2)已知函數(shù)定義域為實數(shù)集,若存在區(qū)間,使得在的值域也是,稱區(qū)間為函數(shù)的“保值區(qū)間”.
①當(dāng)時,請寫出函數(shù)的一個“保值區(qū)間”(不必證明);
②當(dāng)時,問是否存在“保值區(qū)間”?若存在,寫出一個“保值區(qū)間”并給予證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com