15.數(shù)列an=-n2+3λn(n∈N*)為單調遞減數(shù)列,則λ的取值范圍是(-∞,1).

分析 數(shù)列an=-n2+3λn(n∈N*)為單調遞減數(shù)列,可得an>an+1,化簡解出即可得出.

解答 解:∵數(shù)列an=-n2+3λn(n∈N*)為單調遞減數(shù)列,
∴an>an+1,
∴-n2+3λn>-(n+1)2+3λ(n+1),
化為λ<$\frac{1}{3}$(2n+1),
∴λ<1,
∴λ的取值范圍是(-∞,1).
故答案為:(-∞,1).

點評 本題考查了數(shù)列的單調性,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)$f(x)=x-\frac{16}{x}$,則不等式xf(x)≤0的解集為(  )
A.[-4,0)∪(0,4]B.(-4,4)C.[-4,4]D.(-∞,4)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合U={x|0≤x≤6,x∈N},A={2,3,6},B={2,4,5},則A∩(∁UB)=( 。
A.{2,3,4,5,6}B.{3,6}C.{2}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知橢圓的焦點為(-1,0)和(1,0),點P(2,0)在橢圓上,則橢圓的標準方程為( 。
A.$\frac{x^2}{4}+{y^2}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{y^2}{4}+{x^2}=1$D.$\frac{y^2}{4}+\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設f(x)=$\frac{x}{a(x+2)}$,且f(x)=x有唯一解,f(x1)=$\frac{1}{1003}$,xn+1=f(xn)(n∈N*).
(1)求實數(shù)a;
(2)求數(shù)列{xn}的通項公式;
(3)若an=$\frac{4}{{x}_{n}}$-4009,數(shù)列b1,b2-b1,b3-b2,…,bn-bn-1是首項為1,公比為$\frac{1}{3}$的等比數(shù)列,記cn=anbn,求{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若點P是兩條異面直線a,b外一點,則過P且與a,b都平行的平面?zhèn)數(shù)是(  )個.
A.0個B.1個C.0或1個D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.三個數(shù)70.3,0.37,log30.7的大小關系是( 。
A.${7^{0.3}}>{log_3}0.7>{0.3^7}$B.70.3>0.37>log30.7
C.0.37>70.3>log30.7D.${log_3}0.7>{7^{0.3}}>{0.3^7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=$\frac{{5{x^2}}}{{\sqrt{2-x}}}$+lg(3x+1)的定義域為(-$\frac{1}{3}$,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.過拋物線y2=x的焦點F的直線l交拋物線于A,B兩點,且直線l的傾斜角$θ≥\frac{π}{4}$,點A在x軸的上方,則|FA|的取值范圍是($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

同步練習冊答案