已知各項(xiàng)均不為零的數(shù)列,其前n項(xiàng)和滿足;等差數(shù)列中,且是與的等比中項(xiàng)
(1)求和,
(2)記,求的前n項(xiàng)和.
(1);(2).
解析試題分析:(1)通過(guò)求,然后兩式相減得出的遞推形式,,不要忘了驗(yàn)證是否滿足,從而求出 的通項(xiàng)公式,為等差數(shù)列,設(shè),按照這三項(xiàng)成等比數(shù)列,可以通過(guò)已知建立方程求出,然后求出通項(xiàng);(2)分類討論思想,(1)問(wèn)求出,的通項(xiàng)公式有兩個(gè),所以也是兩個(gè),其中或,第一個(gè)通項(xiàng)公式按等比數(shù)列的前N項(xiàng)和求解,第二個(gè)按錯(cuò)位相減法,列出,再列出q,,求出.運(yùn)算量比較大.平時(shí)要加強(qiáng)訓(xùn)練.此題為中檔題.
試題解析:(1)對(duì)于數(shù)列由題可知 ①
當(dāng)時(shí), ②
①-②得 1分
即,
2分
又是以1為首項(xiàng),以為公比的等比數(shù)列
3分
設(shè)等差數(shù)列的公比為,由題知 4分
又
,解得或
當(dāng)時(shí),;當(dāng)時(shí), 6分
(2)當(dāng)時(shí),
7分
當(dāng)時(shí),
此時(shí) ③
④ 8分
③-④得
11分
綜上:時(shí),;時(shí), 12分
考點(diǎn):1.等差,等比數(shù)列的通項(xiàng)公式,性質(zhì);2.已知求;3.錯(cuò)位相減法求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某校高一學(xué)生1000人,每周一次同時(shí)在兩個(gè)可容納600人的會(huì)議室,開(kāi)設(shè)“音樂(lè)欣賞”與“美術(shù)鑒賞”的校本課程.要求每個(gè)學(xué)生都參加,要求第一次聽(tīng)“音樂(lè)欣賞”課的人數(shù)為,其余的人聽(tīng)“美術(shù)鑒賞”課;從第二次起,學(xué)生可從兩個(gè)課中自由選擇.據(jù)往屆經(jīng)驗(yàn),凡是這一次選擇“音樂(lè)欣賞”的學(xué)生,下一次會(huì)有20﹪改選“美術(shù)鑒賞”,而選“美術(shù)鑒賞”的學(xué)生,下次會(huì)有30﹪改選“音樂(lè)欣賞”,用分別表示在第次選“音樂(lè)欣賞”課的人數(shù)和選“美術(shù)鑒賞”課的人數(shù).
(1)若,分別求出第二次,第三次選“音樂(lè)欣賞”課的人數(shù);
(2)①證明數(shù)列是等比數(shù)列,并用表示;
②若要求前十次參加“音樂(lè)欣賞”課的學(xué)生的總?cè)舜尾怀^(guò)5800,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足().
(1)求的值;
(2)求(用含的式子表示);
(3)(理)記數(shù)列的前項(xiàng)和為,求(用含的式子表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列中,.
(1)求證:是等比數(shù)列,并求的通項(xiàng)公式;
(2)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{bn}滿足bn+2=-bn+1-bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2+n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-,若存在實(shí)數(shù)p,q,對(duì)任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,試求q-p的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知公差不為0的等差數(shù)列的前3項(xiàng)和=9,且成等比數(shù)列
(1)求數(shù)列的通項(xiàng)公式和前n項(xiàng)和;
(2)設(shè)為數(shù)列的前n項(xiàng)和,若對(duì)一切恒成立,求實(shí)數(shù)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
稱滿足以下兩個(gè)條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若等比數(shù)列為階“期待數(shù)列”,求公比q及的通項(xiàng)公式;
(2)若一個(gè)等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記n階“期待數(shù)列”的前k項(xiàng)和為:
(i)求證:;
(ii)若存在使,試問(wèn)數(shù)列能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的前項(xiàng)和為,若,點(diǎn)在直線上.
⑴求證:數(shù)列是等差數(shù)列;
⑵若數(shù)列滿足,求數(shù)列的前項(xiàng)和;
⑶設(shè),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列滿足,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com