我們把由半橢圓(x≥0)與半橢圓(x≤0)合成的曲線稱(chēng)作“果圓”,其中a2=b2+c2,a>0,b>c>0.
如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),M是線段A1A2的中點(diǎn).
(1)若△F0F1F2是邊長(zhǎng)為1的等邊三角形,求該“果圓”的方程;
(2)設(shè)P是“果圓”的半橢圓(x≤0)上任意一點(diǎn).求證:當(dāng)|PM|取得最小值時(shí),P在點(diǎn)B1,B2或A1處;
(3)若P是“果圓”上任意一點(diǎn),求|PM|取得最小值時(shí)點(diǎn)P的橫坐標(biāo).
解:(1), , 于是, 所求“果圓”方程為,; (2)設(shè),則
, ,的最小值只能在或處取到. 即當(dāng)取得最小值時(shí),在點(diǎn)或處; (3),且和同時(shí)位于“果圓”的半橢圓和半橢圓上,所以,由(2)知,只需研究位于“果圓”的半橢圓上的情形即可.
. 當(dāng),即時(shí),的最小值在時(shí)取到,此時(shí)的橫坐標(biāo)是. 當(dāng),即時(shí),由于在時(shí)是遞減的,的最小值在時(shí)取到,此時(shí)的橫坐標(biāo)是. 綜上所述,若,當(dāng)取得最小值時(shí),點(diǎn)的橫坐標(biāo)是;若,當(dāng)取得最小值時(shí),點(diǎn)的橫坐標(biāo)是或. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
y2 |
b2 |
x2 |
c2 |
y2 |
b2 |
x2 |
c2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
(2007
上海,21)我們把由半橢圓(x≥0)與半橢圓(x≤0)合成的曲線稱(chēng)作“果圓”,其中,a>0,b>c>0.如下圖,點(diǎn)是相應(yīng)橢圓的焦點(diǎn),分別是“果圓”與x、y軸的交點(diǎn).(1)
若△是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;(2)
當(dāng)時(shí),求的取值范圍;(3)
連接“果圓”上任意兩點(diǎn)的線段稱(chēng)為“果圓”的弦.試研究:是否存在實(shí)數(shù)k,使斜率為k的“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上?若存在,求出所有可能的k值;若不存在,說(shuō)明理由.查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009屆寧夏省期末數(shù)學(xué)模擬試題分類(lèi)匯編(圓錐曲線) 題型:013
我們把由半橢圓(x≥0)與半橢圓合成的曲線稱(chēng)作“果圓”(其中a2=b2+c2,a>b>c>0).如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1、A2和B1、B2是“果圓”與x,y軸的交點(diǎn),若△F0F1F2是邊長(zhǎng)為1的等邊三角,則a,b的值分別為
A.
B.
C.5,3
D.5,4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:同步題 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com