已知數(shù)列{an}的前n項和Sn=12n-n2,求數(shù)列{an}的通項公式.
分析:求出a1,利用n≥2時,an=Sn-Sn-1,求出an,驗證n=1時滿足通項公式,即可求得數(shù)列{an}的通項公式.
解答:解:當(dāng)n=1時,a1=S1=12×1-12=11;
當(dāng)n≥2時,an=Sn-Sn-1=(12n-n2)-[12(n-1)-(n-1)2]=13-2n.
經(jīng)驗證當(dāng)n=1時,a1=11也符合13-2n的形式.
∴數(shù)列{an}的通項公式為an=13-2n
點評:本題考查數(shù)列的通項公式的求法,涉及數(shù)列的通項公式和前n項和公式的關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案