【題目】設(shè) ,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直.
(1)求a的值;
(2)若對(duì)于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范圍.
【答案】
(1)解:f′(x)=
由題設(shè)f′(1)=1,
∴ ,
∴a=0
(2)解: ,x∈[1,+∞),f(x)≤m(x﹣1),即4lnx≤m(3x﹣ ﹣2)
設(shè)g(x)=4lnx﹣m(3x﹣ ﹣2),即x∈[1,|+∞),g(x)≤0,
∴g′(x)= ﹣m(3+ )= ,g′(1)=4﹣4m
①若m≤0,g′(x)>0,g(x)≥g(1)=0,這與題設(shè)g(x)≤0矛盾
②若m∈(0,1),當(dāng)x∈(1, ),g′(x)>0,g(x)單調(diào)遞增,g(x)≥g(1)=0,與題設(shè)矛盾.
③若m≥1,當(dāng)x∈(1,+∞),),g′(x)≤0,g(x)單調(diào)遞減,g(x)≤g(1)=0,即不等式成立
綜上所述,m≥1
【解析】(1)求導(dǎo),由題意可得f'(1)=1,代入即可求得a的值;(2)由題意可知:4lnx≤m(3x﹣ ﹣2)恒成立,構(gòu)造輔助函數(shù),求導(dǎo),分類討論即可求出m的取值范圍
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)均輸》中有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5 錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?”(“錢”是古代的一種重量單位).這個(gè)問題中,乙所得為( )
A. 錢
B. 錢
C. 錢
D. 錢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}中,Sn是前n項(xiàng)和,且S3=S8 , S7=Sk , 則k的值為( )
A.4
B.11
C.2
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2ex+blnx,且在P(1,f(1))處的切線方程為(3e﹣1)x﹣y+1﹣2e=0,g(x)=( ﹣1)ln(x﹣2)+ +1.
(1)求a,b的值;
(2)證明:f(x)的最小值與g(x)的最大值相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn , 若a2 , a5 , a11成等比數(shù)列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),則m+n的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x∈[﹣2,1]時(shí),不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中滿足在(﹣∞,0)上單調(diào)遞減的偶函數(shù)是( )
A.
B.y=|log2(﹣x)|
C.
D.y=sin|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=﹣f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x﹣1,則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且8sin2 .
(1)求角A的大小;
(2)若a= ,b+c=3,求b和c的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com