已知橢圓的右焦點為F210),點 在橢圓上.

1)求橢圓方程;

2)點在圓上,M在第一象限,過M作圓的切線交橢圓于P、Q兩點,問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說明理由.

 

【答案】

1;2|F2P|+|F2Q|+|PQ|是定值,等于4.

【解析】

試題分析:1)右焦點為,左焦點為,點在橢圓上,由橢圓的定義可得,再由可得,從而得橢圓的方程. 2由于PQ與圓切于點M,故用切線長公式求出PMMQ,二者相加求得PQ.,可用兩點間的距離公式,將它們相加,若是一個與點的坐標(biāo)無關(guān)的常數(shù),則是一個定值;否則,則不是定值.

試題解析:1右焦點為,

左焦點為,點在橢圓上

,

所以橢圓方程為 5

2)設(shè) ,

8

連接OM,OP,由相切條件知:

11

同理可求

所以為定值。 13

考點:1、橢圓的方程;2、直線與圓錐曲線;3、圓的切線.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的右焦點為F,右準(zhǔn)線為l,A、B是橢圓上兩點,且|AF|:|BF|=3:2,直線AB與l交于點C,則B分有向線段
AC
所成的比為( 。
A、
1
2
B、2
C、
2
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)二模理)如圖,已知橢圓的右焦點為F,過F的直線(非x軸)交橢圓于M、N兩點,右準(zhǔn)線x軸于點K,左頂點為A.

(1)求證:KF平分∠MKN;

(2)直線AM、AN分別交準(zhǔn)線于點P、Q,設(shè)直線MN的傾斜角為,試用表示線段PQ的長度|PQ|,并求|PQ|的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(14分)已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。

  (1)已知橢圓的離心率;

  (2)若的最大值為49,求橢圓C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(重慶卷)數(shù)學(xué)理工類模擬試卷(三) 題型:解答題

如圖,已知橢圓的右焦點為F,過F的直線(非x軸)交橢圓于M、N兩點,右準(zhǔn)線x軸于點K,左頂點為A

    (Ⅰ)求證:KF平分∠MKN

   (Ⅱ)直線AM、AN分別交準(zhǔn)線于點P、Q,

設(shè)直線MN的傾斜角為,試用表示

線段PQ的長度|PQ|,并求|PQ|的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷十三文科數(shù)學(xué) 題型:解答題

(本小題滿分14分)已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.

  (Ⅰ)求橢圓的離心率;

  (Ⅱ)若的最大值為49,求橢圓C的方程.

 

查看答案和解析>>

同步練習(xí)冊答案