【題目】某互聯(lián)網(wǎng)理財(cái)平臺(tái)為增加平臺(tái)活躍度決定舉行邀請(qǐng)好友拿獎(jiǎng)勵(lì)活動(dòng),規(guī)則是每邀請(qǐng)一位好友在該平臺(tái)注冊(cè),并購(gòu)買至少1萬(wàn)元的12月定期,邀請(qǐng)人可獲得現(xiàn)金及紅包獎(jiǎng)勵(lì),現(xiàn)金獎(jiǎng)勵(lì)為被邀請(qǐng)人理財(cái)金額的,且每邀請(qǐng)一位最高現(xiàn)金獎(jiǎng)勵(lì)為300元,紅包獎(jiǎng)勵(lì)為每邀請(qǐng)一位獎(jiǎng)勵(lì)50元.假設(shè)甲邀請(qǐng)到乙、丙兩人,且乙、丙兩人同意在該平臺(tái)注冊(cè),并進(jìn)行理財(cái),乙、丙兩人分別購(gòu)買1萬(wàn)元、2萬(wàn)元、3萬(wàn)元的12月定期的概率如下表:
理財(cái)金額 | 萬(wàn)元 | 萬(wàn)元 | 萬(wàn)元 |
乙理財(cái)相應(yīng)金額的概率 | |||
丙理財(cái)相應(yīng)金額的概率 |
(1)求乙、丙理財(cái)金額之和不少于5萬(wàn)元的概率;
(2)若甲獲得獎(jiǎng)勵(lì)為元,求的分布列與數(shù)學(xué)期望.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)互斥事件的概率公式以及獨(dú)立事件同時(shí)發(fā)生的概率公式,可以計(jì)算乙、丙理財(cái)金額之和不少于5萬(wàn)元的概率值;(2)根據(jù)題意, 的所有可能取值 ,互斥事件的概率公式以及獨(dú)立事件同時(shí)發(fā)生的概率公式計(jì)算對(duì)應(yīng)的概率值,寫出隨機(jī)變量的分布列,計(jì)算數(shù)學(xué)期望值.
試題解析:(1)設(shè)乙、丙理財(cái)金額分別為ξ萬(wàn)元、η萬(wàn)元,則乙、丙理財(cái)金額之和不少于5萬(wàn)元的概率為P(ξ+η≥5)=PP+PP+PP=×+×+×=.
(2)X的所有可能的取值為300,400,500,600,700.
P=PP=×=,
P=PP+P(ξ=2)P(η=1)=×+=.
P=PP+P(ξ=3)·P(η=1)+P P=×+×+×=,
P=PP+P(ξ=3)P(η=2)=×+×=,
P=P(ξ=3)P(η=3) =×=×=.
所以X的分布列為
X | 300 | 400 | 500 | 600 | 700 |
P |
E(X)=300×+400×+500×+600×+700×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),等腰直角三角形ABC的底邊AB=4,點(diǎn)D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(1)求證:PB⊥DE;
(2)若PE⊥BE,PE=1,求點(diǎn)B到平面PEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為, 為其右焦點(diǎn),若,設(shè),且,則該橢圓離心率的最大值為( )
A. B. C. D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個(gè)命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點(diǎn),則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的運(yùn)動(dòng)方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù) 性別 | 0-2000 | 2001-5000 | 5001-8000 | 8001-10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
附:
(1)已知某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來(lái)估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過(guò)5000步的有人,超過(guò)10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數(shù)f(x)的解析式;并判斷f(x)在[-1,1]上的單調(diào)性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (其中e是自然對(duì)數(shù)的底數(shù),常數(shù)a>0).
(1)當(dāng)a=1時(shí),求曲線在(0,f(0))處的切線方程;
(2)若存在實(shí)數(shù)x∈(a,2],使得不等式f(x)≤e2成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)證明: ,直線都不是曲線的切線;
(2)若,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)在區(qū)間上的極小值等于,求;
(Ⅱ)令, .曲線與交于, 兩點(diǎn),求證: 在中點(diǎn)處的切線斜率大于.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com