設(shè)雙曲線的兩個(gè)焦點(diǎn)分別為、,離心率為2.
(1)求雙曲線的漸近線方程;
(2)過點(diǎn)能否作出直線,使與雙曲線交于、兩點(diǎn),且,若存在,求出直線方程,若不存在,說明理由.
【解析】(1)根據(jù)離心率先求出a2的值,然后令雙曲線等于右側(cè)的1為0,解此方程可得雙曲線的漸近線方程.
(2)設(shè)直線l的方程為,然后直線方程與雙曲線方程聯(lián)立,消去y,得到關(guān)于x的一元二次方程,利用韋達(dá)定理表示此條件,得到關(guān)于k的方程,解出k的值,然后驗(yàn)證判別式是否大于零即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
.(本小題滿分12分) 已知雙曲線的兩個(gè)焦點(diǎn)的坐標(biāo)為、,離心率.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)是(1)中所求雙曲線上任意一點(diǎn),過點(diǎn)的直線與兩漸近線分別交于點(diǎn),若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆重慶市高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)設(shè)雙曲線的兩個(gè)焦點(diǎn)分別為,離心率為2.
(Ⅰ)求此雙曲線的漸近線的方程;
(Ⅱ)若、分別為上的點(diǎn),且,求線段的中點(diǎn)的軌跡方程,并說明軌跡是什么曲線;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省資陽市二下學(xué)期期末質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)分別是雙曲線的兩個(gè)焦點(diǎn),P是該雙曲線上的一點(diǎn),且,則的面積等于
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省資陽市二下學(xué)期期末質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)分別是雙曲線的兩個(gè)焦點(diǎn),P是該雙曲線上的一點(diǎn),且,則的面積等于
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆吉林省高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本題滿分12分)已知雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,漸近線方程為,且經(jīng)過點(diǎn),設(shè)是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)在雙曲線上,且=64.
(1)求雙曲線的方程;
(2)求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com