考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)冪的運(yùn)算法則即可得出;
(2)由log
3(6x-9)=3,化為6x-9=3
3,解出并驗(yàn)證即可;
(3)把
()x2-8>3
-2x化為
38-x2>3-2x,利用指數(shù)函數(shù)的單調(diào)性、一元二次不等式的解法即可得出;
(4)函數(shù)y=log
2(x
2-4x+7)=
log2[(x-2)2+3],利用對數(shù)函數(shù)與二次函數(shù)的單調(diào)性即可得出.
解答:
解:(1)原式=
()2×+1+
()3×(-)=
+1+
=4.
(2)∵log
3(6x-9)=3,∴6x-9=3
3,解得x=6,經(jīng)過驗(yàn)證6是原方程的解;
(3)∵
()x2-8>3
-2x化為
38-x2>3-2x,∴8-x
2>-2x,化為x
2-2x-8<0,解得-2<x<4.
∴原不等式的解集為{x|-2<x<4}.
(4)函數(shù)y=log
2(x
2-4x+7)=
log2[(x-2)2+3]≥log
23,
因此函數(shù)的值域?yàn)閇log
23,+∞).
點(diǎn)評:本題考查了數(shù)函數(shù)的運(yùn)算法則及其單調(diào)性、一元二次不等式的解法、對數(shù)函數(shù)與二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.