已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)為M.
(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中隨機(jī)取一個(gè)數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率;
(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.
(1)     (2)
(1)記“復(fù)數(shù)z為純虛數(shù)”為事件A.
∵組成復(fù)數(shù)z的所有情況共有12個(gè):-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每種情況出現(xiàn)的可能性相等,屬于古典概型,其中事件A包含的基本事件共2個(gè):i,2i,
∴所求事件的概率為P(A)=

(2)依條件可知,點(diǎn)M均勻地分布在平面區(qū)域{(x,y)| }內(nèi),屬于幾何概型,該平面區(qū)域的圖形為右圖中矩形OABC圍成的區(qū)域,面積為S=3×4=12.
而所求事件構(gòu)成的平面區(qū)域?yàn)閧(x,y)| },其圖形如圖中的三角形OAD(陰影部分).
又直線x+2y-3=0與x軸、y軸的交點(diǎn)分別為A(3,0)、D(0,),
∴三角形OAD的面積為S1×3×
∴所求事件的概率為P=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若a是從-1,0,1,2四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求點(diǎn)P(a,b)在拋物線x2=y上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從1,2,3,4,5中任意取出兩個(gè)不同左數(shù),其和為5左概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在一個(gè)長(zhǎng)為,寬為2的矩形OABC內(nèi),曲線與x軸圍成如圖所示的陰影部分,向矩形OABC內(nèi)隨機(jī)投一點(diǎn)(該點(diǎn)落在矩形OABC內(nèi)任何一點(diǎn)是等可能的),則所投的點(diǎn)落在陰影部分的概率是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知事件“在矩形ABCD的邊CD上隨機(jī)取一點(diǎn)P,使△APB的最大邊是AB”發(fā)生的概率為,則=(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有一個(gè)底面圓的半徑為1、高為2的圓柱,點(diǎn)O為這個(gè)圓柱底面圓的圓心,在這個(gè)圓柱內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)O的距離大于1的概率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在可行域內(nèi)任取一點(diǎn),規(guī)則如流程圖所示,求輸出數(shù)對(duì)(x,y)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在長(zhǎng)為的線段上任取一點(diǎn), 則點(diǎn)與線段兩端點(diǎn)、的距離都大于的概率是              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

國(guó)慶節(jié)前夕,甲、乙兩同學(xué)相約10月1日上午8:00到8:30之間在佛山祖廟地鐵站乘車去廣州長(zhǎng)隆野生動(dòng)物園參觀,先到者若等了10分鐘還沒(méi)有等到后到者,則需發(fā)短信聯(lián)系.假設(shè)兩人的出發(fā)時(shí)間是獨(dú)立的,在8:00到8: 30之間到達(dá)祖廟地鐵站是等可能的,則兩人不需要發(fā)短信聯(lián)系就能見(jiàn)面的概率是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案