已知x2+4y2+kz2=36,且x+y+z的最大值為7,則正數(shù)k等于( )
A.1 B.4 C.8 D.9
D
【解析】
試題分析:由柯西不等式可得 (x2+4y2+kz2)(1++)≥(x+y+z)2,再根據(jù)x+y+z的最大值為7,可得36(1++)=49,由此求得正數(shù)k的值.
【解析】
由題意利用柯西不等式可得 (x2+4y2+kz2)(1++)≥(x+y+z)2,
即 36(1++)≥(x+y+z)2.
再根據(jù)x+y+z的最大值為7,可得36(1++)=49,求得正數(shù)k=9,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-6 1.1整除練習(xí)卷(解析版) 題型:選擇題
下列各數(shù)中最小的數(shù)是( )
A.85(9) B.210(6) C.1000(4) D.11111(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 3.3排序不等式練習(xí)卷(解析版) 題型:解答題
設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習(xí)卷(解析版) 題型:填空題
(2014•陜西三模)已知a、b、c、d均為正數(shù),且a2+b2=4,cd=1,則(a2c2+b2d2)(b2c2+a2d2)的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習(xí)卷(解析版) 題型:選擇題
已知x,y均為正數(shù),θ∈(,),且滿(mǎn)足=,+=,則的值為( )
A.2 B.1 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習(xí)卷(解析版) 題型:選擇題
(2014•孝感二模)已知x,y,z均為正數(shù),且x+y+z=2,則++的最大值是( )
A.2 B.2 C.2 D.?3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 2.3反證法與放縮法練習(xí)卷(解析版) 題型:選擇題
用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒(méi)有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為( )
A.整數(shù) B.奇數(shù)或偶數(shù) C.正整數(shù)或負(fù)整數(shù) D.自然數(shù)或負(fù)整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 2.2綜合法與分析法練習(xí)卷(解析版) 題型:填空題
下列表述:
①綜合法是執(zhí)因?qū)Чǎ?/p>
②綜合法是順推法;
③分析法是執(zhí)果索因法;
④分析法是間接證法;
⑤反證法是逆推法.
正確的語(yǔ)句有是 (填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-5 1.2絕對(duì)值不等式練習(xí)卷(解析版) 題型:選擇題
(2013•紅橋區(qū)二模)集合A={x||x﹣2|≤2},B={y|y=﹣x2,﹣1≤x≤2},則A∩B=( )
A.{x|﹣4≤x≤4} B.{x|x≠0} C.{0} D.∅
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com