證明:y=x2在[-2,-1]上是減函數(shù).
考點:函數(shù)單調性的性質
專題:函數(shù)的性質及應用
分析:根據(jù)函數(shù)單調性的定義即可得到結論.
解答: 解:設x1,x2是[-2,-1]上任意兩個變量,且-2≤x1<x2≤-1,
則f(x1)-f(x2)=
x
2
1
-
x
2
2
=(x1+x2)(x1-x2),
∵-2≤x1<x2≤-1,
∴x1-x2<0,∵-4<x1+x2<-2
∴f(x1)-f(x2)=
x
2
1
-
x
2
2
=(x1+x2)(x1-x2)>0,
即f(x1)>f(x2),
∴y=x2在[-2,-1]上是減函數(shù).
點評:本題主要考查函數(shù)單調性的證明,利用函數(shù)的單調性的定義是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足下列條件:
①首項a1=a,(a>3,a∈N*);
②當an=3k,(k∈N*)時,an+1=
an
3

③當an≠3k,(k∈N*)時,an+1=an+1.
(Ⅰ)當a4=1,求首項a之值;
(Ⅱ)當a=2014時,求a2014
(Ⅲ)試證:正整數(shù)3必為數(shù)列{an}中的某一項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一條光線從點P(6,4)射出,經過點Q(2,1),又經x軸反射,求入射光線和反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一圓的圓心P在直線y=x上,且該圓與直線x+2y-1=0相切,截y軸所得弦長為2,求此圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有7道題,其中5道甲類題,2道乙類題,張同學從中任取2道題解答.試求:
(1)所取的兩道題都是甲類題的概率;
(2)所取的兩道題不是同一類題的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-x-
x

(Ⅰ)判斷
f(x)
x
的單調性;
(Ⅱ)求函數(shù)y=f(x)的零點的個數(shù);
(Ⅲ)令g(x)=
ax2+ax
f(x)+
x
+lnx,若函數(shù)y=g(x)在(0,
1
e
)內有極值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2
x+1
x-1
,g(x)=log2(x-1)
(1)判斷f(x)在區(qū)間(1,+∞)上的單調性,并用定義證明;
(2)記函數(shù)h(x)=g(2x+2)+kx,問:是否存在實數(shù)k使得函數(shù)h(x)為偶函數(shù)?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

全集U={(x,y)|x∈R,y∈R},A={(x,y)|y-
1
x
+1=1},B={(x,y)|y=x+2},則B∩∁UA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果對定義在R上的函數(shù)f(x),對任意兩個不相等的實數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)為“H函數(shù)”.給出下列函數(shù)①y=x2;②y=ex+1;③y=2x-sinx;④f(x)=
ln|x|
 
 
 
x≠0
0
 
 
 
 
 
 
x=0
.以上函數(shù)是“H函數(shù)”的所有序號為
 

查看答案和解析>>

同步練習冊答案