設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.
(1)求f(x)的解析式;
(2)求f(x)在點(diǎn)A(1,16)處的切線方程.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求出原函數(shù)的導(dǎo)函數(shù),根據(jù)f(x)在x=3處取得極值,得到f′(3)=0,由此求得a的值,則函數(shù)f(x)的解析式可求;
(2)由(1)得到f′(x)=6x2-24x+18,求得f′(1)=0,∴f(x)在點(diǎn)A(1,16)處的切線方程可求.
解答: 解:(1)∵f(x)=2x3-3(a+1)x2+6ax+8,
∴f′(x)=6x2-6(a+1)x+6a,
又∵f(x)在x=3處取得極值,
∴f′(3)=6×9-6(a+1)×3+6a=0,解得a=3.
∴f(x)=2x3-12x2+18x+8;
(2)A(1,16)在f(x)上,
由(1)可知f′(x)=6x2-24x+18,
f′(1)=6-24+18=0,
∴切線方程為y=16.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程,解答此題需注意的是,函數(shù)極值點(diǎn)處的導(dǎo)數(shù)等于0,但導(dǎo)數(shù)為0的點(diǎn)不一定是極值點(diǎn),是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={y|y=x2-2x},B={x|y=log2(3-x),則A∩B=( 。
A、∅B、(-1,3)
C、[-1,3)D、[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l1:x+ay+1=0與l2:(a-3)x+2y-5=0(a∈R)互相垂直,則直線l2的斜率為( 。
A、
1
2
B、-
1
2
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-2x-3≤0},B={x|m-2≤x≤m+2}.
(1)若A∪B=A,求實(shí)數(shù)m的取值;
(2)若A⊆∁RB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(4,5)引圓(x-2)2+y2=4的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊方程是AB:5x-y-12=0,BC:x+3y+4=0,CA:x-5y+12=0,
(1)求∠A的大;
(2)求BC邊上的高所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在側(cè)棱垂直于底面的三棱柱ABC-A1B1C1中,AC=BC=
2
,且AC⊥BC,點(diǎn)D是A1B1中點(diǎn).
(1)求證:平面AC1D⊥平面A1ABB1;
(2)若直線AC1與平面A1ABB1所成角的正弦值為
10
10
,求三棱錐A1-AC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)B的坐標(biāo)為(0,1),離心率為
2
2
.直線l與橢圓C交于M,N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C的右焦點(diǎn)F恰好為△BMN的垂心,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2+2cos8
+2
1-sin8
的化簡(jiǎn)結(jié)果是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案