在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為a的正方形,PA⊥平面ABCD,且PA=2AB.(1)求證:BD⊥PC;
(2)求三棱錐A-PCD的體積;
(3)求二面角B-PC-D的余弦值.
(1)證明:如圖所示,連接BD交AC于點(diǎn)O.
∵四邊形ABCD是正方形,∴BD⊥AC.
∵PA⊥底面ABCD,∴PA⊥BD.
又AC∩BD=O.
∴BD⊥平面PAC,∴BD⊥PC.
(2)∵PA⊥底面ABCD,∴PA=2a是四棱錐P-ACD的高.
SACD=
1
2
AD•CD=
1
2
a2

V四棱錐P-ACD=
1
3
S△ACD•PA
=
1
3
1
2
a2•2a
=
1
3
a3

(3)建立如圖所示的空間直角坐標(biāo)系,則A(0,0,0),B(a,0,0),C(a,a,0),D(0,a,0),P(0,0,2a).
BC
=(0,a,0),
PC
=(a,a,-2a),
DC
=(a,0,0).
設(shè)平面PAC的法向量為
m
=(x,y,z),則
m
BC
=ay=0
m
PC
=ax+ay-2az=0
,令x=2,則y=0,z=1,∴
m
=(2,0,1)

同理可得平面PCD的法向量
n
=(0,2,1).
cos<
m
,
n
=
m
n
|
m
||
n
|
=
1
5
5
=
1
5

由圖形可知:二面角B-PC-D的平面角是鈍角,故其余弦值為-
1
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:是平行四邊形平面外一點(diǎn),分別是上的點(diǎn),且=,     求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖梯形ABCD,ADBC,∠A=90°,過點(diǎn)C作CEAB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點(diǎn)為P,在直線DE上是否存在一點(diǎn)M,使得PM面BCD?若存在,請(qǐng)指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直四棱柱ABCD-A1B1C1D1中,平面A1BC⊥平面A1ABB1,AB=BC=2,AA1=2
2

(1)求證:BC⊥平面A1ABB1;
(2)求直線A1B與平面A1AC成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在棱長(zhǎng)為1的正方體A1B1C1D1-ABCD中,
(1)求直線B1D與平面A1BC1所成的角;
(2)求點(diǎn)A到面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點(diǎn)D在AB上.
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)若D是AB中點(diǎn),求證:AC1平面B1CD;
(Ⅲ)當(dāng)
BD
AB
=
1
3
時(shí),求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn),PA=PD=AD=2.
(Ⅰ)求證:AD⊥平面PQB;
(Ⅱ)點(diǎn)M在線段PC上,PM=tPC,試確定t的值,使PA平面MQB;
(Ⅲ)若PA平面MQB,平面PAD⊥平面ABCD,求二面角M-BQ-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD為正方形,PA⊥面ABCD,且PA=AB=4,E為PD中點(diǎn).
(1)證明:PB平面AEC;
(2)證明:平面PCD⊥平面PAD;
(3)求二面角E-AC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ACB=90°,AB=2,BC=1,AA1=
6
,D是棱CC1的中點(diǎn).
(Ⅰ)證明:A1D⊥平面AB1C1
(Ⅱ)求平面A1B1A與平面AB1C1所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案