2.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的表面積為( 。
A.4B.$6+4\sqrt{2}$C.$4+4\sqrt{2}$D.2

分析 由已知中的三視圖可得:該幾何體是一個以主視圖為底面的三棱柱,代入棱柱表面積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個以主視圖為底面的三棱柱,
底面面積為:$\frac{1}{2}$×2×1=1,
底面周長為:2+2×$\sqrt{2}$=2+2$\sqrt{2}$,
故棱柱的表面積S=2×1+2×(2+2$\sqrt{2}$)=6+4$\sqrt{2}$,
故選:B.

點評 本題考查的知識點是棱柱的體積和表面積,棱錐的體積和表面積,簡單幾何體的三視圖,難度基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$的定義域是( 。
A.(-∞,$\frac{1}{2}$)B.(-∞,0]C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦點到漸近線的距離為2,且雙曲線的一條漸近線與直線x-2y+3=0平行,則雙曲線的方程為( 。
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{8}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-{y^2}=1$D.${x^2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求二面角A-BC1-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex-2x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)x>0時,方程f(x)=kx2-2x無解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知O為坐標(biāo)原點,F(xiàn)是雙曲線$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點,A,B分別為Γ的左、右頂點,P為Γ上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E,直線 BM與y軸交于點N,若|OE|=2|ON|,則 Γ的離心率為(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.兩座燈塔A和B與海洋觀測站C的距離分別是akm和2akm,燈塔A在觀測站C的北偏東20°,燈塔B在觀測站C的南偏東40°,則燈塔A與燈塔B之間的距離為(  )
A.$\sqrt{3}$akmB.2akmC.$\sqrt{5}$akmD.$\sqrt{7}$akm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=($\frac{1}{2}$)${\;}^{2{x}^{2}-3x+1}$的遞減區(qū)間為( 。
A.[$\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知$z=\frac{1+2i}{3-4i}$,求|z|;
(2)已知2-3i是關(guān)于x的一元二次實系數(shù)方程x2+px+q=0的一個根,求實數(shù)p,q的值.

查看答案和解析>>

同步練習(xí)冊答案