已知橢圓.,分別為橢圓的左,右焦點,, 分別為橢圓的左,右頂點.過右焦點且垂直于軸的直線與橢圓在第一象限的交點為.

(1)  求橢圓的標準方程;

(2)  直線與橢圓交于,兩點, 直線交于點.當(dāng)直線變化時, 點是否恒在一條定直線上?若是,求此定直線方程;若不是,請說明理由.

 

【答案】

(1), . 點在橢圓上,

  ,     

    (舍去).  .

   橢圓的方程為.                          ………4分

(2)當(dāng)軸時,,, 又,

, 聯(lián)立解得.

當(dāng)過橢圓的上頂點時, ,,

, ,聯(lián)立解得.    

若定直線存在,則方程應(yīng)是.                            ………8分 

下面給予證明.

代入橢圓方程,整理得,

成立, 記, ,則, .

,

當(dāng)時,縱坐標應(yīng)相等, , 須

, 須

成立.

綜上,定直線方程為  

【解析】(1)根據(jù)條件易求c,然后根據(jù)點M在橢圓上建立方程即可求解。

(2)本題是探索性問題,應(yīng)先假設(shè)存在,然后要對直線出現(xiàn)的各種情況討論,分類解決。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)
如圖,四邊形OABC為矩形,點A、C的坐標分別為(a+1,0)(a>1)、(0,1),點D在OA上,坐標為(a,0),橢圓C分別以O(shè)D、OC為長、短半軸,CD是橢圓在矩形內(nèi)部的橢圓。阎本l:y=-x+m與橢圓弧相切,且與AD相交于點E.
(Ⅰ)當(dāng)m=2時,求橢圓C的標準方程;
(Ⅱ)圓M在矩形內(nèi)部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率e=
3
2
,S△DEF2=1-
3
2
.若點M(x0,y0)在橢圓C上,則點N(
x0
a
,
y0
b
)稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的標準方程;
(2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線經(jīng)過橢圓 

的左頂點A和上頂點D,橢圓的右頂點為,點和橢

上位于軸上方的動點,直線,與直線

分別交于兩點。

   (I)求橢圓的方程;

   (Ⅱ)求線段MN的長度的最小值;

   (Ⅲ)當(dāng)線段MN的長度最小時,在橢圓上是否存在這

樣的點,使得的面積為?若存在,確定點的個數(shù),若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

  如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的

  左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢

  圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點

  分別 為

   (Ⅰ)求橢圓和雙曲線的標準方程; 

   (Ⅱ)設(shè)直線、的斜率分別為,證明;

   (Ⅲ)是否存在常數(shù),使得恒成立?

      若存在,求的值;若不存在,請說明理由.

                                                             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標高三上學(xué)期數(shù)學(xué)單元測試9-理科-解析幾何 題型:解答題

 (09廣東19)(12分)

已知橢圓G的中心在坐標原點,長軸在軸上,離心率為,兩個焦點分別為,橢

圓G上一點到的距離之和為12.圓:的圓心為點

   (1)求橢圓G的方程

   (2)求的面積

   (3)問是否存在圓包圍橢圓G?請說明理由.

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案