[2014·開封模擬]已知α是第二象限角,P(x,)為其終邊上一點(diǎn),且cosα=x,則x=( )
A. B.± C.- D.-
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:5-4數(shù)列求和(解析版) 題型:選擇題
[2014·江南十校聯(lián)考]已知函數(shù)f(x)=xa的圖象過點(diǎn)(4,2),令an=,n∈N*.記數(shù)列{an}的前n項(xiàng)和為Sn,則S2013=( )
A.-1 B.-1
C.-1 D.+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:3-7正弦定理和余弦定理(解析版) 題型:填空題
[2014·北京西城區(qū)期末]在△ABC中,三個(gè)內(nèi)角A,B,C的對邊分別為a,b,c.若b=,B=,tanC=2,則c=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:3-4正弦型函數(shù)的圖象及應(yīng)用(解析版) 題型:選擇題
[2012·安徽高考]要得到函數(shù)y=cos(2x+1)的圖象,只要將函數(shù)y=cos2x的圖象( )
A.向左平移1個(gè)單位 B.向右平移1個(gè)單位
C.向左平移個(gè)單位 D.向右平移個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:3-2同角三角函數(shù)的基本關(guān)系式與誘導(dǎo)公式(解析版) 題型:選擇題
[2014·濱州模擬]sin600°+tan240°的值等于( )
A.- B. C.- D.+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:2-9函數(shù)模型及其應(yīng)用(解析版) 題型:選擇題
[2014·上海模擬]某位股民購進(jìn)某支股票,在接下來的交易時(shí)間內(nèi),他的這支股票先經(jīng)歷了n次漲停(每次上漲10%),又經(jīng)歷了n次跌停(每次下跌10%),則該股民這支股票的盈虧情況(不考慮其他費(fèi)用)為( )
A.略有盈利 B.略有虧損
C.沒有盈利也沒有虧損 D.無法判斷盈虧情況
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:2-8函數(shù)與方程(解析版) 題型:選擇題
[2013·湖北黃岡一模]若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|的解有( )
A.2個(gè) B.3個(gè) C.4個(gè) D.多于4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:2-4二次函數(shù)與冪函數(shù)(解析版) 題型:填空題
[2014·北京西城模擬]已知函數(shù)f(x)=,其中c>0.那么f(x)的零點(diǎn)是________;若f(x)的值域是,則c的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:10-8n次獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布(解析版) 題型:填空題
某人一周晚上值班2次,在已知他周日一定值班的條件下,他在周六晚上值班的概率為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com