如圖1, E, F,G分別是邊長為2的正方形所ABCD所在邊的中點,沿EF將ΔCEF截去后,又沿EG將多邊形ABEFD折起,使得平面DGEF丄平面ABEG得到如圖2所示的多面體.

(1) 求證:FG丄平面BEF;
(2) 求二面角A-BF-E的大;
(3) 求多面體ADG—BFE的體積.
(1)略   (2)(3)
(I)易證:FG,再證FG即可.
(2)本小題易用向量法求解,建立空間直角坐標系后再分別求出平面ABF和平面BFE的法向量,根據(jù)法向量的夾角與二面角相等或互補來求二面角.
(3)不規(guī)則的幾何體求其體積要通過割補法求其體積.本小題可以連結(jié)BD、BG將多面體ADG-BFE分割成一個四棱錐B-EFDG和一個三棱錐D-ABG,則多面體的體積= VB-EFDG + VD-ABG
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 四棱錐的底面與四個側(cè)面的形狀和大小如圖所示。

(Ⅰ)寫出四棱錐中四對線面垂直關(guān)系(不要求證明)
(Ⅱ)在四棱錐中,若的中點,求證:平面
(Ⅲ)求四棱錐值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=,BD=CD=1,另一個側(cè)面是正三角形

(1)求證:AD^BC
(2)求二面角B-AC-D的大小
(3)在直線AC上是否存在一點E,使ED與面BCD成30°角?若存在,確定E的位置;若 
不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別是邊AD和BC上的點,且EF∥AB,AD ="2AE" ="2AB" =" 4AF=" 4,將四邊形EFCD沿EF折起使AE=AD.
(1)求證:AF∥平面CBD;
(2)求平面CBD與平面ABFE夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于任意的直線與平面,在平面內(nèi)必有直線,使(     )
A.平行B.相交C.垂直D.互為異面直線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,分別是的中點,且.
(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知球的半徑為,球內(nèi)接圓錐的高為,體積為,
 
(1)寫出以表示的函數(shù)關(guān)系式;
(2)當為何值時,有最大值,并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,點M、N分別在AB1、BC1上,且AM=AB1,BN=BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個數(shù)是( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中底面ABCD為矩形,PD⊥底面ABCD,AD=PD=1,AB=BC,E、F分別為CD、PB的中點。

(1)求證:EF⊥平面PAB;
(2)求三棱錐P-AEF的體積

查看答案和解析>>

同步練習冊答案