【題目】高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過x的最大整數(shù),則稱為高斯函數(shù),例如:,.已知函數(shù),則關(guān)于函數(shù)的敘述中正確的是( )
A.是偶函數(shù)B.是奇函數(shù)
C.在R上是增函數(shù)D.的值域是
E.的值域是
【答案】BCE
【解析】
計算得出判斷選項A不正確;用函數(shù)的奇偶性定義,可證是奇函數(shù),選項B正確;通過分離常數(shù)結(jié)合復(fù)合函數(shù)的單調(diào)性,可得出在R上是增函數(shù),判斷選項正確;由的范圍,利用不等式的關(guān)系,可求出,進而判斷選項E正確,選項D不正確,即可求得結(jié)果.
根據(jù)題意知,.
∵,
,
,
∴函數(shù)既不是奇函數(shù)也不是偶函數(shù),A錯誤;
,
∴是奇函數(shù),B正確;
由復(fù)合函數(shù)的單調(diào)性知在R上是增函數(shù),C正確;
,,
,,D錯誤,E正確.
故選:BCE.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“楊輝三角”是我國數(shù)學(xué)史上的一個偉大成就,是二項式系數(shù)在三角形中的一種幾何排列.如圖所示,去除所有為1的項,依此構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前46項和為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進行記憶,記住后蒙住眼睛快速還原魔方.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗證這個結(jié)論,某興趣小組隨機抽取了100名魔方愛好者進行調(diào)查,得到的部分數(shù)據(jù)如表所示:已知在全部100人中隨機抽取1人抽到喜歡盲擰的概率為.
喜歡盲擰 | 不喜歡盲擰 | 總計 | |
男 | 10 | ||
女 | 20 | ||
總計 | 100 |
表(1)
并邀請這100人中的喜歡盲擰的人參加盲擰三階魔方比賽,其完成時間的頻率分布如表所示:
完成時間(分鐘) | [0,10) | [10,20) | [20,30) | [30,40] |
頻率 | 0.2 | 0.4 | 0.3 | 0.1 |
表(2)
(Ⅰ)將表(1)補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為是否喜歡盲擰與性別有關(guān)?
(Ⅱ)現(xiàn)從表(2)中完成時間在[30,40] 內(nèi)的人中任意抽取2人對他們的盲擰情況進行視頻記錄,記完成時間在[30,40]內(nèi)的甲、乙、丙3人中恰有一人被抽到為事件A,求事件A發(fā)生的概率.
(參考公式:,其中)
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:①若mα,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;③若α∩β=n,m∥n,則m∥α且m∥β;④若m⊥α,m⊥β,則α∥β.其中真命題的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=–3x2+2x–m+1.
(1)若x=0為函數(shù)的一個零點,求m的值;
(2)當m為何值時,函數(shù)有兩個零點、一個零點、無零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次詩詞大會決賽前,甲、乙、丙丁四位選手有機會問鼎冠軍,三名詩詞愛好者依據(jù)選手在之前比賽中的表現(xiàn),結(jié)合自己的判斷,對本場比賽的冠軍進行了如下猜測:猜測冠軍是乙或丁;猜測冠軍一定不是丙和丁;猜測冠軍是甲或乙。比賽結(jié)束后發(fā)現(xiàn),三個人中只有一個人的猜測是正確的,則冠軍是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知直線 的參數(shù)方程為 (為參數(shù)),曲線的極坐標方程為 .
(1)求曲線的直角坐標方程,并指出該曲線是什么曲線;
(2)若直線 與曲線的交點分別為 ,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在點處的切線方程是
(1)求實數(shù)的值.
(2)若方程有唯一實數(shù)解,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com