【題目】為了解學(xué)生的學(xué)習(xí)情況,某學(xué)校在一次考試中隨機抽取了20名學(xué)生的成績,分成[50,60),[60,70),[70,80),[80,90),[90,100]五組,繪制了如圖所示頻率分布直方圖.求:

(Ⅰ)圖中m的值;

(II)估計全年級本次考試的平均分;

(III)若從樣本中隨機抽取分?jǐn)?shù)在[80,100]的學(xué)生兩名,求所抽取兩人至少有一人分?jǐn)?shù)不低于90分的概率.

【答案】(I)0.045; (II)75;(III)0.7

【解析】

(Ⅰ)根據(jù)頻率之和為1,結(jié)合題中數(shù)據(jù),即可求出結(jié)果;

(II)每組的中間值乘以該組頻率,再求和,即可得出結(jié)果;

(III)用列舉法列舉出總的基本事件,以及滿足條件的基本事件,基本事件的個數(shù)比即為所求的概率.

(Ⅰ)由題意可得:

(Ⅱ)各組的頻率分別為0.05,0.25,0.45,0.15,0.1,所以可估計全年級的平均分為;

(Ⅲ)分?jǐn)?shù)落在[80,90)的人數(shù)有3人,設(shè)為a,bc,落在[90,100的人數(shù)有2人,設(shè)為A、B,則從中隨機抽取兩名的結(jié)果有{ab},(ac},{a4}(aB},{bc},(bA}(bB),{cA},{cB),{AB}共10種,其中至少有一人不低于90分的有7種,故概率為0.7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x3﹣3x+2+m(m>0),在區(qū)間[0,2]上存在三個不同的實數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長的三角形是直角三角形,則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(a﹣bx3)ex ,且函數(shù)f(x)的圖象在點(1,e)處的切線與直線x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求證:當(dāng)x∈(0,1)時,f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的高二(1)班男同學(xué)有45名,女同學(xué)有15名,老師按照分層抽樣的方法組建了一個4人的課外興趣小組.

(1)求課外興趣小組中男、女同學(xué)的人數(shù);

(2)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項實驗,方法是先從小組里選出1名同學(xué)做實驗,該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實驗,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;

(3)試驗結(jié)束后,第一次做試驗的同學(xué)得到的試驗數(shù)據(jù)為68,70,71,72,74,第二次做試驗的同學(xué)得到的試驗數(shù)據(jù)為69,70,70,72,74 ,請問哪位同學(xué)的實驗更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列三角形數(shù)表:
假設(shè)第n行的第二個數(shù)為
(1)歸納出an+1與an的關(guān)系式,并求出an的通項公式;
(2)設(shè)anbn=1(n≥2),求證:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點,若點的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對任意實數(shù)a≠0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,均與底面垂直,且為直角梯形,,,,分別為線段的中點,為線段上任意一點.

(1)證明:平面.

(2)若,證明:平面平面.

查看答案和解析>>

同步練習(xí)冊答案