【題目】已知等差數(shù)列的前項和為,等比數(shù)列的前項和為,且
(1)設(shè),求數(shù)列的通項公式;
(2)在(1)的條件下,且,求滿足的所有正整數(shù);
(3)若存在正整數(shù),且,試比較與的大小,并說明理由.
【答案】(1)當(dāng)d=0, 當(dāng),(2)(3) ,見解析
【解析】
(1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,根據(jù)a3=b2,a4=b3,a1=b1=1建立關(guān)系求解an,bn的通項公式,可得數(shù)列{an+bn}的通項公式;
(2)利用等差數(shù)列和等比數(shù)列的前n項和公式建立關(guān)系,利用函數(shù)的極值思想,求解n、m的關(guān)系,可得答案.
(3)存在正整數(shù)m(m≥3),且am=bm>0,需對q=1或q>1進行討論,利用一次函數(shù)與指數(shù)函數(shù)的圖像特點,即可得結(jié)論.
(1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,
∵a1=b1=1.
a3=b2,a4=b3,∴1+2d=q,1+3d=q2,
聯(lián)立解得d=0,q=1;d,q.
∴d=0,q=1時,an=1,bn=1,an+bn=2.
d,q時,an=1(n﹣1),bn,an+bn.
(2)在(1)的條件下,且an≠an+1,∴d≠0,d,q,
Sn=n,Pm2.
n22,
解得:n或n.
滿足Sn=Pm的所有正整數(shù)n、m為:,,,,
(3)存在正整數(shù)m(m≥3),且am=bm>0,
1+(m﹣1)d=qm﹣1>0.
1,1+d,1+2d,…,1+(m﹣1)d.
1,q,q2,…,qm﹣1.
若q=1,則(m﹣1)d=0,可得d=0.則Sm=m,Pm=m,此時Sm=Pm.
若q≠1,則d≠0,將{an}與{bn}分別視為關(guān)于x的函數(shù),
若有am=bm則q>1.大致圖像:
由一次函數(shù)與指數(shù)函數(shù)的圖像特點可得:當(dāng)1<n< m時,an>bn,
∴Sm﹣Pm>0.
∴存在正整數(shù)m(m≥3),且am=bm>0,Sm≥Pm.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形中,,,,為中點,以為折痕把折起,使點到達(dá)點的位置(平面).
(Ⅰ)證明:;
(Ⅱ)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機抽取一人,估計其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,對任意,點都在函數(shù)的圖象上.
(1)求,歸納數(shù)列的通項公式(不必證明).
(2)將數(shù)列依次按項、項、項、項、項循環(huán)地分為,,,,各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值.
(3)設(shè)為數(shù)列的前項積,若不等式對一切都成立,其中,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.設(shè)m為實數(shù),若方程表示雙曲線,則m>2.
B.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件
C.命題“x∈R,使得x2+2x+3<0”的否定是:“x∈R,x2+2x+3>0”
D.命題“若x0為y=f(x)的極值點,則f’(x)=0”的逆命題是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),實數(shù)滿足;
(1)當(dāng)函數(shù)的定義域為時,求的值域;
(2)求函數(shù)關(guān)系式,并求函數(shù)的定義域;
(3)在(2)的結(jié)論中,對任意,都存在,使得成立,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經(jīng)濟的巨大發(fā)展.據(jù)統(tǒng) 計,在2018年這一年內(nèi)從 市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了 解乘客出行的滿意度,現(xiàn)從中隨機抽取人次作為樣本,得到下表(單位:人次):
滿意度 | 老年人 | 中年人 | 青年人 | |||
乘坐高鐵 | 乘坐飛機 | 乘坐高鐵 | 乘坐飛機 | 乘坐高鐵 | 乘坐飛機 | |
10分(滿意) | 12 | 1 | 20 | 2 | 20 | 1 |
5分(一般) | 2 | 3 | 6 | 2 | 4 | 9 |
0分(不滿意) | 1 | 0 | 6 | 3 | 4 | 4 |
(span>1)在樣本中任取個,求這個出行人恰好不是青年人的概率;
(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學(xué)期望;
(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機? 并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com