已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱.證明當(dāng)時(shí),;

(3)如果,且,證明

 

【答案】

(1).令,則

當(dāng)變化時(shí),的變化情況如下表:

極大值

所以在區(qū)間內(nèi)是增函數(shù),在區(qū)間內(nèi)是減函數(shù).

函數(shù)處取得極大值.且.   (4分)

(2)因?yàn)楹瘮?shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱,

所以,于是

,則,

當(dāng)時(shí),,從而,又,所以

于是函數(shù)在區(qū)間上是增函數(shù).

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052521252020708488/SYS201205252127372652111695_DA.files/image030.png">,所以,當(dāng)時(shí),.因此

(3) ① 若,由(1)及,得,與矛盾;

 ②若,由由(1)及,得,與矛盾;

根據(jù)①,②可得.不妨設(shè)

由(2)可知,所以

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052521252020708488/SYS201205252127372652111695_DA.files/image042.png">,所以,又,由(1),在區(qū)間內(nèi)是增函數(shù),

所以 ,即

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省臨沂市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求函數(shù)的定義域 ;

(2)若函數(shù)的最小值為,求實(shí)數(shù)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年人教版高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)求f(x)的定義域和值域;
(2)證明函數(shù)在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知函數(shù);
(1)求出函數(shù)f(x)的對(duì)稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x,使得成立,若存在求出x;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的定義域;

(2)判斷函數(shù)的奇偶性,并予以證明;

(3)若,猜想之間的關(guān)系并證明.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市高三入學(xué)測(cè)試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知函數(shù) ,

  (1)求函數(shù)的定義域;(2)證明:是偶函數(shù);

  (3)若,求的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案