2條直線將一個平面最多分成4部分,3條直線將一個平面最多分成7部分, 4條直線將一個平面最多分成11部分,……;,,;……
(1)條直線將一個平面最多分成多少個部分(>1)?證明你的結論;
(2)個平面最多將空間分割成多少個部分(>2)?證明你的結論
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
(I)證明:AB1⊥BC1;
(II)求點B到平面AB1C1的距離;
(III)求二面角C1—AB1—A1的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(示范性高中做)
已知正方體的棱長為1,點是棱的中點,點是棱的中點,點是上底面的中心.
(Ⅰ)求證:MO平面NBD;
(Ⅱ)求二面角的大。
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知平面是正三角形,

(Ⅰ)求異面直線所成角的余弦值;
(Ⅱ)求證:平面平面;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)如圖,已知正三棱柱的底面正三角形的邊長是2,D是的中點,直線與側(cè)面所成的角是.

⑴求二面角的大小;
⑵求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)在四棱錐P—ABCD中,底面ABCDa的正方形,PA⊥平面ABCD,

PA=2AB
(1)求證:平面PAC⊥平面PBD;
(2)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,三棱柱中,側(cè)面底面,
,O中點.
(Ⅰ)證明:平面
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在上是否存在一點,使得平面,若不存在,說明理由;若存在,
確定點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在直三棱柱中,.有下列條件:

;②;③.其中能成為
的充要條件的是(填上該條件的序號)________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知球的半徑為1,三點都在球面上,且每兩點間的球面距離均為,則球心到平面的距離為
A.B.C.D.

查看答案和解析>>

同步練習冊答案