15.設(shè)f(x)=mx2+3(m-4)x-9.
(1)試判斷函數(shù)f(x)零點(diǎn)的個(gè)數(shù);
(2)若滿足f(1-x)=f(1+x),求m的值;
(3)若m=1時(shí),x∈[0,2]上存在x使f(x)-a>0成立,求a的取值范圍.

分析 (1)對(duì)二次項(xiàng)系數(shù)討論,分類判斷;
(2)由題意可知f(x)的圖象關(guān)于直線x=1對(duì)稱,二次函數(shù)的對(duì)稱軸-$\frac{3(m-4)}{2m}$=1,求出m的值;
(3)原命題等價(jià)于f(x)-a>0有解,即f(x)>a有解,故只需a小于f(x)的最大值即可.

解答 解:(1)①當(dāng)m=0時(shí),f(x)=-12x-9為一次函數(shù),有唯一零點(diǎn)
②當(dāng)m≠0時(shí),由△=9(m-4)2+36m=9(m-2)2+108>0故f(x)必有兩個(gè)零點(diǎn)
(2)由條件可得f(x)的圖象關(guān)于直線x=1對(duì)稱,
∴-$\frac{3(m-4)}{2m}$=1,且m≠0,
解得:m=$\frac{12}{5}$;
(3)依題原命題等價(jià)于f(x)-a>0有解,即f(x)>a有解
∴a<f(x)max
∵f(x)在[0,2]上遞減,
∴f(x)max=f(0)=-9,
故a的取值范圍為a<-9.

點(diǎn)評(píng) 考查了二次項(xiàng)系數(shù)為字母時(shí)的分類討論和區(qū)間內(nèi)有解問(wèn)題,需要對(duì)題意理解到位.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知銳角α,β,γ滿足sinα-sinβ+sinγ=0,cosα-cosβ-cosγ=0,則α-β=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)焦點(diǎn)為F1,若橢圓上存在一個(gè)點(diǎn)P,滿足以橢圓短軸為直徑的圓與線段PF1相切于該線段的中點(diǎn),則橢圓的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖甲,⊙O的直徑AB=2,圓上兩點(diǎn)C,D在直徑AB的兩側(cè),使$∠CAB=\frac{π}{4}$,$∠DAB=\frac{π}{3}$.沿直徑AB折起,使兩個(gè)半圓所在的平面互相垂直(如圖乙),F(xiàn)為BC的中點(diǎn),E為AO的中點(diǎn).P為AC上的動(dòng)點(diǎn),根據(jù)圖乙解答下列各題:

(1)求點(diǎn)D到平面ABC的距離;
(2)在BD弧上是否存在一點(diǎn)G,使得FG∥平面ACD?若存在,試確定點(diǎn)G的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)把滿足條件“對(duì)任意的s,t∈(一1,1)且s≠t.都有|f(s)-f(t)|≤3|s-t|”的函數(shù)f(x)組成的集合記作集合G.
(1)分別判斷函數(shù)f1(x)=$\sqrt{1+{x}^{2}}$,f2(x)=log2(1+x)是否屬于集合G:
(2)若f3(x)=ax2+bx且f3(x)∈G.求證:當(dāng)x∈(-2,2)時(shí),|f3(x)|≤6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$f(x)=2sin({2x-\frac{π}{6}})$.則$f({\frac{5π}{24}})$=$\sqrt{2}$;若f(x)≥1,則滿足條件的x的集合為{x|kπ+$\frac{π}{6}$≤x≤kπ+$\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如果點(diǎn)P(sinθcosθ,3sinθ)位于第三象限,則角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.計(jì)算:
(1)lg5lg20-lg2lg50-lg25.
(2)(2${a}^{\frac{2}{3}}$$^{\frac{1}{2}}$)(-6${a}^{\frac{1}{2}}$$^{\frac{1}{3}}$ )÷(-3${a}^{\frac{1}{6}}$$^{\frac{5}{6}}$ )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,$\overrightarrow a$與$\overrightarrow b$的夾角為45°,求使向量$(2\overrightarrow a-λ\overrightarrow b)$與$(λ\overrightarrow a-3\overrightarrow b)$的夾角是銳角的實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案