如圖,ADB為半圓,AB為直徑,O為圓心,,Q為AB為的中點(diǎn),|AB|=4,某曲線C過(guò)點(diǎn)Q,動(dòng)點(diǎn)P在曲線C上,且|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線C的方程;
(2)過(guò)點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)M、N,求△OMN面積的最大值.

【答案】分析:(1)以AB和OD所在的直線為x軸、y軸,O為原點(diǎn),由題中的條件得:PA|+|PB|=,曲線C是以A、B為焦點(diǎn)的橢圓,待定系數(shù)法求橢圓的方程.
(2)設(shè)直線y=kx+2,代入曲線方程,由判別式大于0得k2的范圍,利用根與系數(shù)的關(guān)系,求出點(diǎn)O到直線MN的距離,用弦長(zhǎng)公式求得MN的長(zhǎng)度,代入三角形面積公式,再利用基本不等式求出面積的最大值.
解答:解:(1)以AB和OD所在的直線為x軸、y軸,O為原點(diǎn),
建立直角坐標(biāo)系,∵|AB|=4,∴A(-2,0),B(2,0),D(0,2).
∴|PA|+|PB|=
∴曲線C是以A、B為焦點(diǎn)的橢圓,其長(zhǎng)軸長(zhǎng),2c=4,∴曲線C的方程為

(2)設(shè)直線y=kx+2,代入曲線方程得(1+5k2)+20kx+15=0.
設(shè)M(x1,y1),N(x2,y2),則△=(20k)2-4(1+5k2)•15>0,∴
,
點(diǎn)O到直線MN的距離,又=
==
設(shè)
,
,
=,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
此時(shí)
∴S△OMN的最大值為
點(diǎn)評(píng):本題考查用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式及基本不等式的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,
ADB
為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過(guò)Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(2)過(guò)D點(diǎn)的直線l與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè)
DM
DN
=λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ADB為半圓,AB為直徑,O為圓心,
AB
OD
=0
,Q為AB為的中點(diǎn),|AB|=4,某曲線C過(guò)點(diǎn)Q,動(dòng)點(diǎn)P在曲線C上,且|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線C的方程;
(2)過(guò)點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)M、N,求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,
ADB
為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過(guò)Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)過(guò)點(diǎn)B的直線l與曲線C交于M、N兩點(diǎn),與OD所在直線交于E點(diǎn),若
EM
=λ1
MB
,
EN
=λ2
NB
,求證:λ1+λ2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ADB為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過(guò)Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(2)過(guò)D點(diǎn)的直線l與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè)
|DM||DN|
=λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)

如圖,ADB為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過(guò)Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變。

   (I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;

   (II)過(guò)點(diǎn)B的直線l與曲線C交于M、N兩點(diǎn),與OD所在直線交于E點(diǎn),

        為定值。

查看答案和解析>>

同步練習(xí)冊(cè)答案