如圖,已知菱形所在平面與直角梯形所在平面互相垂直,,點,分別是線段,的中點.
(I)求證:平面 平面;
(Ⅱ)點在直線上,且//平面,求平面與平面所成角的余弦值。
(I)先證平面 (Ⅱ)
解析試題分析:(1)證明:在菱形中,因為,所以是等邊三角形,
又是線段的中點,所以,
因為平面平面,所以平面,所以;
在直角梯形中,,,得到:,從而,所以,
所以平面,又平面,所以平面平面;
(2)由(1)平面,如圖,分別以所在直線為軸,軸,軸建立空間直角坐標(biāo)系,
則,
設(shè)點的坐標(biāo)是,則共面,所以存在實數(shù)使得:
,
得到:.即點的坐標(biāo)是:,
由(1)知道:平面的法向量是,設(shè)平面的法向量是,
則:,
令,則,即,
所以, 即平面與平面所成角的余弦值是。
考點:平面與平面垂直 二面角
點評:本題考查的知識點是平面與平面垂直的判定及二面角,其中熟練掌握直線與平面垂直的判定及性質(zhì),是解答本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點.
(1)求證:MQ∥平面PAB;
(2)若AN⊥PC,垂足為N,求證:MN⊥PD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在四棱錐中,底面是邊長為2的正方形,側(cè)棱平面,且,為底面對角線的交點,分別為棱的中點
(1)求證://平面;
(2)求證:平面;
(3)求點到平面的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形, ,為中點.
(Ⅰ)證明:平面;
(Ⅱ)求異面直線BS與AC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺。
如圖,在四棱臺中,下底是邊長為的正方形,上底是邊長為1的正方形,側(cè)棱⊥平面,.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com