【題目】如圖,已知橢圓的左右頂點分別為
,右焦點為
,焦距為
,點
是橢圓C上異于
兩點的動點,
的面積最大值為
.
(1)求橢圓C的方程;
(2)若直線與直線
交于點
,試判斷以
為直徑的圓與直線
的位置關系,并作出證明.
【答案】(1)(2)以
為直徑的圓與直線
相切.
【解析】試題分析:(1)因為的面積最大值為
,所以可列方程組
解得
(2)直線與圓位置關系的判斷,一般利用圓心到直線距離與半徑大小進行判斷, 設
,則可得直線PF方程,可得D點坐標,進而可得圓心,即BD中點坐標,再根據(jù)點到直線距離公式可得圓心到PF距離,最后與半徑(BD一半)比較大小即可
試題解析:(1)由題意得, ,解得:
,所以,橢圓方程為:
.
(2)以為直徑的圓與直線
相切.
證明:設直線:
,則:
,
的中點為
為
聯(lián)立,消去
整理得:
設,由韋達定理得:
,
解得: ,故有:
又,所以當
時,
,
,此時
軸,
以為直徑的圓
與直線
相切.
當時,
,
所以直線
,即:
,
所以點到直線
的距離
而,即知:
,所以以
為直徑的圓與直線
相切.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M:(x﹣1)2+(y﹣1)2=4,直線l過點P(2,3)且與圓M交于A,B兩點,且|AB|=2 .
(1)求直線l方程;
(2)設Q(x0 , y0)為圓M上的點,求x02+y02的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】底面是正方形的四棱錐中中,側面
底面
,且
是等腰直角三角形,其中
,
分別為線段
的中點,問在線段
上是否存在點
,使得二面角
的余弦值為
,若存在,請求出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}和{bn}的每一項都是正數(shù),且a1=8,b1=16,且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列.
(1)求a2 , b2的值;
(2)求數(shù)列{an},{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
為自然對數(shù)的底數(shù).
(Ⅰ)求曲線在
處的切線方程;
(Ⅱ)關于的不等式
在
恒成立,求實數(shù)
的取值范圍;
(Ⅲ)關于的方程
有兩個實根
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=tx2-(22t+60)x+144t(x>0).
(1)要使f(x)≥0恒成立,求t的最小值;
(2)令f(x)=0,求使t>20成立的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黃種人群中各種血型的人所占的比例如下:
血型 | A | B | AB | O |
該血型的人所占比例(%) | 28 | 29 | 8 | 35 |
已知同種血型的人可以輸血,O型血可以輸給任何一種血型的人,其他不同血型的人不能互相輸血,小明是B型血,若小明因病需要輸血,問:
(1)任找一個人,其血可以輸給小明的概率是多少?
(2)任找一個人,其血不能輸給小明的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com